Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 245: 125664, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31877458

ABSTRACT

Most of the volatile organic compounds (VOCs) are toxic and harmful to human health and environment. In this study, hydrochars activated with CO2 were applied to remove VOCs. Two typical VOCs, acetone and cyclohexane, were used as the 'model' adsorbates to evaluate hydrochars' performance. Specific surface areas of pristine hydrochars were small (<8 m2/g), whereas activated hydrochars showed much higher values (up to 1308 m2/g). As a result, the adsorption of VOCs onto the pristine hydrochars (13.24-24.64 mg/g) was lower than that of the activated ones (39.42-121.74 mg/g). The adsorption of the two VOCs onto the hydrochars was exothermal. In addition, there were significant correlations (R2 > 0.91) between the VOC removal and hydrochars' specific surface area. These results suggest that the governing mechanism was mainly physical adsorption. Increasing experimental temperature (80-139 °C) desorbed the VOCs from the hydrochars. Due to its higher boiling point, cyclohexane desorption required a higher temperature than acetone desorption. The reusability of the activated hydrochars to the two VOCs was confirmed by five continuous adsorption-desorption cycles. The overall results indicated that hydrochars, particularly after CO2 activation, are sufficient for VOC abatement.


Subject(s)
Acetone/chemistry , Carbon Dioxide/chemistry , Carbon/chemistry , Cyclohexanes/chemistry , Volatile Organic Compounds/isolation & purification , Adsorption , Charcoal/chemistry , Environmental Restoration and Remediation/methods , Surface Properties , Temperature , Volatile Organic Compounds/chemistry
2.
Chemosphere ; 218: 680-686, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30504043

ABSTRACT

Hydrochars derived from hickory wood and peanut hull through hydrothermal carbonization were activated with H3PO4 and KOH to improve their performance as a volatile organic compound (VOC) adsorbent. Polar acetone and nonpolar cyclohexane were used as representative VOCs. The VOC adsorptive capacities of the activated hydrochars (50.57-159.66 mg⋅g-1) were greater than that of the nonactivated hydrochars (15.98-25.36 mg⋅g-1), which was mainly caused by the enlargement of surface area. The significant linear correlation (R2 = 0.984 on acetone, and R2 = 0.869 on cyclohexane) between BET surface areas of hydrochars and their VOC adsorption capacities, together with the obvious adsorption exothermal peak of differential scanning calorimetry curve confirmed physical adsorption as the dominating mechanism. Finally, the reusability of activated hydrochar was tested on H3PO4 activated hickory hydrochar (HHP), which had higher acetone and cyclohexane adsorption capacities. After five continuous adsorption desorption cycles, the adsorptive capacities of acetone and cyclohexane on HHP decreased by 6.2% and 7.8%, respectively. The slight decline in adsorption capacity confirmed the reusability of activated hydrochar as a VOC sorbent.


Subject(s)
Adsorption , Charcoal/chemistry , Volatile Organic Compounds/chemistry , Acetone , Carbon/chemistry , Cyclohexanes , Phosphoric Acids , Volatile Organic Compounds/isolation & purification
3.
Bioresour Technol ; 197: 356-62, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26344243

ABSTRACT

In this work, a novel approach was developed to prepare an engineered biochar from KMnO4 treated hickory wood through slow pyrolysis (600°C). Characterization experiments with various tools showed that the engineered biochar surface was covered with MnOx ultrafine particles. In comparison to the pristine biochar, the engineered biochar also had more surface oxygen-containing functional groups and much larger surface area. Batch sorption experiments showed that the engineered biochar had strong sorption ability to Pb(II), Cu(II), and Cd(II) with maximum sorption capacities of 153.1, 34.2, and 28.1mg/g, respectively, which were significantly higher than that of the pristine biochar. Batch sorption experiments also showed that the dosage, initial solution pH, and ionic strength affected the removal of the heavy metals by the biochars. The removal of the metals by the engineered biochar was mainly through surface adsorption mechanisms involving both the surface MnOx particles and oxygen-containing groups.


Subject(s)
Cadmium/chemistry , Charcoal/chemistry , Copper/chemistry , Lead/chemistry , Water Purification/methods , Adsorption , Cations, Divalent/chemistry , Potassium Permanganate/chemistry , Wood/chemistry
4.
Bioresour Technol ; 140: 439-42, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23711882

ABSTRACT

In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time.


Subject(s)
Biofuels , Biotechnology/methods , Charcoal/chemistry , Introduced Species , Anacardiaceae/chemistry , Biomass , Dioscorea/chemistry , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...