Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 946: 174415, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969116

ABSTRACT

Mercury (Hg) alkylation and methane (CH4) emissions pose significant global concerns. Paddy soil, due to its long-term anaerobic conditions and abundant organic matter, is hotspots for soil Hg alkylation and CH4 emissions. However, the relevance between Hg alkylation and CH4 emissions, especially their simultaneous reduction strategies, remains poorly understood. Here, we investigated the effects of biochar (BC), selenium (Se) and rice straw (RS) amendments on Hg alkylation and CH4 emissions in paddy soil, and the accumulation of Hg speciation. Results found that both BC and RS amendments significantly increased the levels of soil organic carbon (SOC) and humification index (HIX). Furthermore, BC decreased the concentrations of Hg(II), methylmercury (MeHg) and ethylmercury (EtHg) by 63.1%, 53.6% and 100% in rice grains. However, RS increased Hg(II) concentration but decreased the total Hg (THg), MeHg and EtHg concentrations in rice grains. Compared to the CK, RS significantly increased CH4 emissions, while BC decreased CH4 emissions, and Se showed no significant difference. Se amendment increased the Hg(II) and EtHg concentrations by 20.3% and 17.0% respectively, and decreased the MeHg concentration in grains by 58.3%. Both BC and RS impacted the abundance of methanogens by enhancing SOC and HIX, subsequently modulating the relevance between Hg alkylation and CH4 emissions. These findings provide insights into the relevance between Hg alkylation and CH4 emissions and propose potential mitigation mechanisms in Hg-contaminated paddy soil.

2.
Sci Total Environ ; 783: 147123, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34088155

ABSTRACT

Integrated Rice-frog Ecosystem (IRFE) has the potential to reduce methane (CH4) emission and maintain yields from paddy fields. However, the quantitative relationship between rice morphological traits and CH4 emission remains to be explored. In this study, a 2-year field experiment was conducted to evaluate the effect of IRFE on rice morphological traits and CH4 emission from paddy fields and the ecological mechanisms. This study was conducted to analyze twelve aboveground and eight underground rice morphological traits, rice yields, and CH4 flux and emission from the paddy fields with six frog densities (0, 3750, 7500, 15,000, 30,000, and 60,000 frogs ha-1). The results showed that IRFE reduced CH4 emission by 24.70%-41.75% and 21.68%-51.21% in the 2018 and 2019 rice growth seasons, respectively. Moreover, CH4 emission decreased with the increase of frogs. Frogs also increased the diameter, biomass, and volume of rice roots, thus promoting rice growth. Root biomass, thousand-grain weight, and harvest index were also closely related to the yield. Root porosity and oxygen secretion capacity were negatively correlated with CH4 flux. Frogs increased root porosity and oxygen secretion, thereby reducing CH4 emission. The present study demonstrated that reducing CH4 emission and improving rice yields could be simultaneously achieved by altering rice morphological traits in IRFE.

3.
Huan Jing Ke Xue ; 41(4): 1666-1675, 2020 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-32608672

ABSTRACT

Combined with on-site water quality investigation and nirS gene high-throughput sequencing technology, the evolution characteristics and influencing factors of the denitrification community during the formation of spring thermal stratification in Zhoucun Reservoir were analyzed. The results show that the water body stratification gradually formed during this period, and the environmental factors (NO3-, NH4+, TN, TOC, BOD5, permanganate index, TP, Fe, and Mn) showed significant differences (P<0.01); nitrogen showed a significant decline process. High-throughput sequencing provided 8703 OTU, which were divided into three phyla and eight major genera, proteobacteria accounted for the largest proportion with 45.27%-78.90%. The α-diversity except for the Simpson index showed that the ACE index, Chao index, Shannon index, and coverage index showed significant differences (P<0.05). The principal coordinate analysis showed the denitrification community exhibited significant differences in the spring, which was consistent with adonis result (P<0.001); network analysis (OTU-OTU) showed that there were seven main modules in this period, including 316 edges of 131 nodes, and the proportion of positive correlation edges was 95.25%. Network analysis (OTU-environmental factors) showed that there were five modules in this period, including 329 edges of 140 nodes, and the proportion of positive correlation edges was 51.98%. Sixty-two indicator OTU and 28 keystone OTU were obtained based on the indicator OTU analysis and network analysis. RDA and mantel test analysis indicated that T, DO, NO3-, TN, TOC, BOD5, and TP were the main environmental factors driving the denitrifying bacterial community structure and the key denitrifying OTU evolution in spring. Our results will provide technical support for the migration and transformation of nitrogen in reservoir water and pollution control.

4.
Chemosphere ; 245: 125571, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31881387

ABSTRACT

Double pollution with phosphorus (P) losses and potential lead (Pb) accumulation in rice fields could lead to eutrophication and crop toxicity, respectively, and affect people's health. To promote the sustainable and environmentally friendly development of agriculture, we conducted field experiments using a randomized block design to explore P losses, Pb accumulation and any potential association between P and Pb forms in rice-duck (RD) co-culture system and rice monoculture (RM) system combined with different fertilizers applied: the no fertilizer (RD and RM), chemical fertilizer (RDF and RMF), organic fertilizer (RDO and RMO), and a mixture of 70% chemical and 30% organic fertilizers (RDFO and RMFO) treatments with consistent P inputs. The results showed that RDFO had the best advantages in reducing the losses of TP (total phosphorous) (by 6.67%) and DRP (dissolved reactive phosphate) (32.72%) as well as the contents of available Pb (by 7.57%) and the accumulation of Pb in grains (26.32%) compared with RMF. RDFO also achieved the highest grain yield, reaching 10.97 t ha-1, and exhibited a lower soil weak-acid-extracted Pb (readily be taken up by plants) concentration than RDF and RMF. RDO resulted in greater TP leaching (increase by 10.62%) and lower DRP leaching (decrease by 36.57%) than RMF. It also exhibited the lowest concentration of weak-acid-extracted Pb and higher the concentration of grain Pb than that in other treatments. RDF reduced TP (by 5.33%) and DRP (by 16.36%) losses to a greater extent and the concentration of available and grain Pb were respectively 6.58% and 25.57% lower than RMF. Therefore, RDFO was the most recommended agricultural system for the studied region. Furthermore, different soil Pb forms were correlated with different P forms of soil and leakage and runoff water, which depended mainly on the fertilizer type and specific soil redox environment in the rice fields. The ratio of organic to inorganic fertilizer, the choice of organic fertilizer type, the assessment and timing of the detection of potential farmland pollution risks and association between different forms of P and Pb are worthy of further discussion.


Subject(s)
Agriculture/methods , Ducks , Fertilizers , Lead/metabolism , Oryza , Phosphorus/analysis , Animals , China , Coculture Techniques , Eutrophication , Nitrogen/analysis , Phosphates , Soil/chemistry
5.
Front Microbiol ; 10: 1752, 2019.
Article in English | MEDLINE | ID: mdl-31440215

ABSTRACT

Rice-frog cultivation is a traditional farming system in China and has been reintroduced as an agricultural practice in China in recent years. The microbial community in paddy rhizospheric soils has attracted much attention because many microorganisms participate in functional processes in soils. In this study, Illumina MiSeq sequencing-based techniques were used to investigate soil microbial communities and functional gene patterns across samples obtained by conventional rice cultivation (CR) and rice-frog cultivation (RF). The results showed that RF significantly affected the microbial community composition and richness, which indicated that the rhizospheric microorganisms responded to the introduction of tiger frogs into the paddy fields. Operational taxonomic units (OTUs) from Sandaracinaceae, Anaerolineaceae, Candidatus Nitrososphaera, Candidatus Nitrosotalea, Candidatus Nitrosoarchaeum and some unclassified OTUs from Euryarchaeota and Agaricomycetes were significantly enriched by RF. The abiotic parameters soil organic carbon (SOC), nitrate nitrogen (NO3 --N), and available phosphorus (AP) changed under RF treatment and played essential roles in establishing the soil bacterial, archaeal, and fungal compositions. Correlations between environmental factors and microbial communities were described using network analysis. SOC was strongly correlated with Anaerolineaceae, Methanosaeta, and Scutellinia. NO3 --N showed strong positive correlations with Opitutus, Geobacter, and Methanosaeta. NH4 ++-N was strongly positively associated with Sideroxydans, and TN was strongly positively correlated with Candidatus Nitrotoga. Compared to conventional CR, RF greatly enriched specific microbial taxa. These taxa may be involved in the decomposition of complex organic matter and the transformation of soil nutrients, thus promoting plant growth by improving nutrient cycling. The unique patterns of microbial taxonomic and functional composition in soil profiles suggested functional redundancy in these paddy soils. RF could significantly affect the bacterial, archaeal, and fungal communities though changing SOC and AP levels.

6.
Article in English | MEDLINE | ID: mdl-31159212

ABSTRACT

Integrated rice-frog farming (IRFF), as a mode of ecological farming, is fundamental in realizing sustainable development in agriculture. Yet its production of greenhouse gas (GHG) emissions remains unclear. Here, a randomized plot field experiment was performed to study the GHG emissions for various farming systems during the rice growing season. The farming systems included: conventional farming (CF), green integrated rice-frog farming (GIRF), and organic integrated rice-frog farming (OIRF). Results indicate that the cumulative methane (CH4) emissions from the whole growth period were divergent for the three farming systems, with OIRF having the highest value and CF having the lowest. For nitrous oxide (N2O) emissions, the order is reversed. IRFF significantly increased the dissolved oxygen (DO), soil redox potential (Eh), total organic carbon (TOC) content, and soil C:N ratio, which is closely related to GHG emissions in rice fields. Additionally, the average emissions of carbon dioxide (CO2) from soils during rice growing seasons ranged from 2312.27 to 2589.62 kg ha-1 and showed no significant difference in the three treatments. Rice yield in the GIRF and OIRF were lower (2.0% and 16.7%) than the control. The CH4 emissions contributed to 83.0-96.8% of global warming potential (GWP). Compared to CF, the treatment of GIRF and OIRF increased the GWP by 41.3% and 98.2% during the whole growing period of rice, respectively. IRFF significantly increased greenhouse gas intensity (GHGI, 0.79 kg CO2-eq ha-1 grain yield), by 91.1% over the control. Compared to the OIRF, GIRF decreased the GHGI by approximately 39.4% (0.59 kg CO2-eq ha-1 grain yield), which was 44.2% higher than that of the control. The results of structural equation model showed that the contribution of fertilization to CH4 emissions in paddy fields was much greater than that of frog activity. Moreover, frog activity could decrease GWP by reducing CH4 emissions from rice fields. And while GIRF showed a slight increase in GHG emissions, it could still be considered as a good strategy for providing an environmentally-friendly option in maintaining crop yield in paddy fields.


Subject(s)
Agriculture/methods , Anura , Greenhouse Gases/analysis , Oryza , Animals , Carbon Dioxide/analysis , Methane/analysis , Nitrous Oxide/analysis , Random Allocation , Seasons , Soil/chemistry
7.
Sci Total Environ ; 686: 555-567, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31185403

ABSTRACT

Nitrogen (N) leakage in paddy fields can cause groundwater pollution. In this study, we conducted a split-plot field experiment over 2 years to compare N leakage in a rice-duck co-culture system and a rice monoculture system with different fertilizer treatments. Four treatments were applied to each field, with consistent N inputs in each fertilizer treatment: no fertilizer (RD and RM, respectively), chemical fertilizer (RDF and RMF, respectively), organic fertilizer (RDO and RMO, respectively), and a mixture of 70% chemical and 30% organic fertilizers (RDFO and RMFO, respectively). In both years, rice-duck co-culture system had lower N leakage than the rice monoculture for the same fertilizer treatment, with average reductions of 14.3 ±â€¯0.1%, 13.5 ±â€¯4.5% and 10.5 ±â€¯3.3% for RDFO, RDF and RDO, respectively. Within the rice-duck co-culture system, the average N leakage across both years was 36.3 ±â€¯6.3% lower in RDO and 16.9 ±â€¯11.5% lower in RDFO than in RMF. RDFO gave the highest grain yield compared with RDF and RDO, average reached 10.35 t ha-1 across both years. In conclusion, our results suggested that rice-duck co-culture reduces environmental risks by controlling N leakage and increasing agricultural productivity. Compared with other treatments in this research, RDFO was the most recommended agricultural production mode in this region because it can reduce the inputs of chemical fertilizer, control nitrogen leakage and increase rice yield.


Subject(s)
Agriculture/methods , Fertilizers , Nitrogen/analysis , Water Pollutants, Chemical/analysis , China
8.
Biol Pharm Bull ; 42(5): 758-763, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30842352

ABSTRACT

MicroRNAs were involved in a wide range of biological processes of diabetic nephropathy (DN). It is reported that miR-15b-5p was downregulated in the patients with DN. However, the mechanisms underlying the regulatory effects of miR-15b-5p on patients with diabetes remain unclear. Thus, this study aimed to investigate the role of miR-15b-5p during high glucose (HG)-induced apoptosis in human kidney cells. Quantitative real-time (qRT)-PCR was used to detect the level of miR-15b-5p. CCK-8 assay, EdU staining assays and flow cytometry were used to detect cell proliferation, apoptosis respectively in vitro. In addition, Western blotting was used to determine active caspase-3, cleaved poly(ADP-ribose) polymerase (PARP), phosphorylated (p)-AKT, p-mammalian target of rapamycin (mTOR), p-S6, p-c-Jun N terminal kinase (JNK), p-p38 and p-extracellular signal-regulated kinase (ERK) proteins levels. The expression of miR-15b-5p in patients with DN were dramatically decreased compared with health persons. Similarly, HG down-regulated the expression of miR-15b-5p in HK-2 cells. In contrast, miR-15b-5p mimics alleviated HG-induced apoptosis in HK-2 cells via decreasing the expressions of active caspase 3 and cleaved PARP. EdU detection further confirmed that miR-15b-5p mimics attenuated the anti-proliferation effect of HG in HK-2 cells. Furthermore, HG-induced Akt/mTOR pathway downregulation and JNK upregulation were markedly reversed by miR-15b-5p mimics in cells. The data suggested that miR-15b-5p mimics protects HK-2 cells from HG-induced apoptosis. The anti-apoptotic effects of miR-15b-5p may due to the activation of the Akt/mTOR pathway as well as inactivation of JNK. Taken together, miR-15b-5p might be a potential therapeutic target for the treatment of patients with DN.


Subject(s)
Biomimetic Materials/pharmacology , Glucose/pharmacology , MicroRNAs/chemistry , Apoptosis/drug effects , Biomimetic Materials/chemistry , Caspase 3/metabolism , Cell Line , Cell Proliferation/drug effects , Cells, Cultured , Humans , MAP Kinase Signaling System/drug effects , MicroRNAs/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Transfection
9.
Sci Total Environ ; 651(Pt 1): 998-1010, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30266057

ABSTRACT

The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ±â€¯0.01 mg/L and 2.34 ±â€¯0.06 mg/L to 0.06 ±â€¯0.01 mg/L and 0.48 ±â€¯0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ±â€¯0.25 and 79.38% ±â€¯3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04-3.38 × 103 copies/mL and 0.71 ±â€¯0.22 × 102 cfu/mL to 5.36-5.81 × 103 copies/mL and 8.64 ±â€¯2.08 × 103 cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ±â€¯0.02 mg/L in February to 1.51 ±â€¯0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (SR) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future.


Subject(s)
Fresh Water/microbiology , Nitrogen/analysis , Water Microbiology , Water Pollutants, Chemical/analysis , Bacteria, Aerobic , Denitrification , Ecosystem , Environmental Monitoring , Nitrates , Nitrogen/metabolism
10.
Int J Mol Sci ; 19(12)2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30486439

ABSTRACT

Eco-agricultural systems aim to reduce the use of chemical fertilizers in order to improve sustainable production and maintain a healthy ecosystem. The aim of this study was to explore the effects of rice-frog farming on the bacterial community and N-cycling microbes in paddy rhizosphere soil. This experiment involved three rice cultivation patterns: Conventionally cultivated rice (CR), green rice-frog farming (GR), and organic rice-frog farming (OR). The rice yield, paddy soil enzyme activities, physicochemical variables and bacterial and N-cycling bacterial abundances were quantitatively analyzed. Rice-frog cultivations significantly increased soil protease, nitrate and reductase activity. Additionally, the nirS gene copy number and the relative abundance of denitrifying bacteria also increased, however urease activity and the relative abundance of nitrifying bacteria significantly decreased. The bacterial community richness and diversity of OR soil was significantly higher than that of the GR or CR soil. Nitrogen use efficiency (NUE) of GR was highest. The N-cycling bacterial community was positively correlated with the total carbon (TC), total nitrogren (TN) and carbon to nitrogen (C:N) ratio. The present work strengthens our current understanding of the soil bacterial community structure and its functions under rice-frog farming. The present work also provides certain theoretical support for the selection of rational rice cultivation patterns.


Subject(s)
Bacteria/classification , Biodiversity , Oryza/microbiology , Rhizosphere , Soil Microbiology , Bacteria/genetics , Bacteria/metabolism , Enzymes/genetics , Enzymes/metabolism , Metagenome , Metagenomics/methods , Nitrogen , Phylogeny , Soil/chemistry
11.
Chemosphere ; 211: 1123-1136, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30223328

ABSTRACT

Zhoucun reservoir is one of the major water resources in Zao Zhuang city, northern China. The seasonal distribution of surface sediment denitrification rate and enhanced performance of denitrification via water-lifting aeration technology were explored using the acetylene-inhibition technique. Surface sediment denitrification rates ranged from 2.57 ±â€¯1.32 to 923.90 ±â€¯86.81 nmol N2/(g dw·h), with the highest rates in November (ANOVA, p < 0.05) and significantly low rates in June, July, and August (ANOVA, p < 0.05), mainly because of the seasonal differences in nitrate concentration, water temperature, and sediment total nitrogen (STN). Meanwhile, the N2/(N2+N2O) ratio (83.44-91.70% for the highest sediment denitrification period) indicated that N2 accounted for a majority of denitrification. Correlation analysis between various environmental factors and denitrification was conducted, and nitrate concentration, STN, low molecular weight organic carbon, the number of aerobic denitrifying bacteria, and the environmental parameters of oxidation-reduction potential (ORP), pH, electrical conductivity (EC), and chlorophyll a (Chl-a) presented significant relationships during the entire study period. On the basis of the multiple regression model, nitrate and low molecular weight organic carbon concentration were the most influential factors on denitrification variability. Moreover, the denitrification rates of the surface sediment clearly increased, from 5.28 to 13.22 nmol N2/(g dw·h) to 1117.02-3129.47 nmol N2/(g dw·h), which were higher than those in the non-operating year. This suggests that the denitrification in the sediment system could be enhanced in situ by water-lifting and aeration technology in the reservoir ecosystem.


Subject(s)
Bacteria, Aerobic/metabolism , Denitrification , Nitrogen , Seasons , Water/chemistry , China , Ecosystem , Geologic Sediments/chemistry , Nitrogen/analysis , Temperature
12.
Huan Jing Ke Xue ; 37(11): 4187-4193, 2016 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-29964669

ABSTRACT

In order to explore the trend and driving factors of nitrogen in the early stage of the thermal stratification in Zhoucun reservoir, the water quality indicators in main reservoir area of Zhoucun reservoir were monitored regularly form February to April (2016). Meanwhile, the fresh water and surface sediments in the sampling point were collected to study the effect of water and sediment denitrification by simulation in laboratory. The results showed that: the concentration of TN decreased from (2.28±0.09) mg·L-1 to (1.08±0.09) mg·L-1, the concentration of nitrate nitrogen decreased from (1.66±0.09) mg·L-1 to (0.25±0.06) mg·L-1, whereas the concentration of ammonia nitrogen and nitrite showed little change in the early thermal stratification of Zhoucun reservoir. At the same time, chlorophyll was not significantly increased, so the algae had little effect on nitrogen; the decreasing nitrogen was mainly due to the aerobic denitrification. Gradually increased temperature,the changes of DO and pH and the composition of organic matter (low molecular weight) were beneficial to the growth of aerobic denitrifying bacteria. Furthermore, the number of bacteria increased from 1.06×105 cfu·L-1 to 8.33×106 cfu·L-1, which enhanced the denitrification of the reservoir; Meanwhile, in the simulation experiments, the TN removal rates of water and water-sediment systems reached 0.7 mg and 3.3 mg, respectively. Water and sediment denitrification ratio was generally 1:4, and the aerobic denitrification of surface sediment was an important factor in the removal of nitrogen in reservoir.

13.
Huan Jing Ke Xue ; 37(9): 3394-3401, 2016 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-29964773

ABSTRACT

The fluorescent components were examined using excitation emission matrix fluorescence spectroscopy-parallel factor analysis technique for samples collected in August, 2015 from Zhouncun Reservoir. Principal component analysis was used to study the main factors and their relative contributions to DOM. Three fluorescent components were identified by PARAFAC, including fulvic-like component(C1:260,350/420 nm), protein-like(C2:280/360 nm) and humic-like (C3:270,390/530 nm) which showed the same source. The even spatial distribution of each component, higher total fluorescence intensity in storage port, high fluorescence index, high biological index, low humification index and the freshness index which was close to one showed that the DOM had a strong autochthonous contribution. The results of PCA showed that the autochthonous contribution reached 70.86%, and those three components of Zhoucun Reservoir could be connected with aph(440) by nonlinear multiple regression which means we can use the three-dimensional fluorescence spectrum results of DOM to control the pollution sources and indicate the eutrophication degree of Zhoucun Reservoir.


Subject(s)
Eutrophication , Water Pollution/analysis , China , Factor Analysis, Statistical , Principal Component Analysis , Seasons , Spectrometry, Fluorescence
14.
Huan Jing Ke Xue ; 37(12): 4577-4585, 2016 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-29965297

ABSTRACT

The differences in the resource and characteristics of DOM between Zhoucun Reservoir and Jinpen Reservoir were studied by fluorescence ultraviolet-visible (UV-vis) and excitation-emission matrix spectra combined with parallel analysis (EEMs-PARAFAC). The results showed that three fluorescent components were identified by PARAFAC model in Zhoucun Reservoir and Jinpen Reservoir, including long wave humus-like component (C1: 350/460 nm), visible fulvic-like (C2: 335/410 nm) and protein-like (C3: 260,285/360 nm). However, the fluorescence intensity and the relative proportions of DOM exhibited significant difference (P<0.01) in two reservoirs. Moreover, the concentration of protein-like component in Zhoucun Reservoir was higher than that in Jinpen Reservoir, while the concentration of humus-like component presented the opposite trend. Based on the comparison of fluorescence index, biological index, humification index and the freshness index, the DOM of Zhoucun Reservoir where the land-use type was cultivated, livestock and residential, the internal pollution of sediments was serious, indicating a strong autochthonous component and aquatic bacterial origin, whereas the DOM of Jinpen Reservoir dominated by forest system had a higher terrigenous contribution in winter. From all the results, hydrological conditions of the reservoir and the characteristics of coastal ecological environment were important factors to influence the DOM sources and characteristics.


Subject(s)
Organic Chemicals/analysis , Seasons , Water Pollutants, Chemical/analysis , Water Supply , Agriculture , Bacteria , China , Forests , Soil , Spectrometry, Fluorescence
15.
Huan Jing Ke Xue ; 36(11): 4260-7, 2015 Nov.
Article in Chinese | MEDLINE | ID: mdl-26911017

ABSTRACT

As soil fertility in apple orchard with clean tillage is declined continuously, interplanting herbage in orchard, which is a new orchard management model, plays an important role in improving orchard soil conditions. By using biolog micro-plate technique, this paper studied the functional diversity of soil microbial community under four species of management model in apple orchards, including clear tillage model, interplanting white clover model, interplanting small crown flower model and interplanting cocksfoot model, and the carbon source utilization characteristics of microbial community were explored, which could provide a reference for revealing driving mechanism of ecological process of orchard soil. The results showed that the functional diversity of microbial community had a significant difference among different treatments and in the order of white clover > small crown flower > cocksfoot > clear tillage. The correlation analysis showed that the average well color development (AWCD), Shannon index, Richness index and McIntosh index were all highly significantly positively correlated with soil organic carbon, total nitrogen, microbial biomass carbon, and Shannon index was significantly positively correlated with soil pH. The principal component analysis and the fingerprints of the physiological carbon metabolism of the microbial community demonstrated that grass treatments improved carbon source metabolic ability of soil microbial community, and the soil microbes with perennial legumes (White Clover and small crown flower) had a significantly higher utilization rate in carbohydrates (N-Acetyl-D-Glucosamine, D-Mannitol, ß-Methyl-D-Glucoside), amino acids (Glycyl-L-Glutamic acid, L-Serine, L-Threonine) and polymers (Tween 40, Glycogen) than the soil microbes with clear tillage. It was considered that different treatments had the unique microbial community structure and peculiar carbon source utilization characteristics.


Subject(s)
Carbon/analysis , Malus , Soil Microbiology , Soil/chemistry , Agriculture , Amino Acids/analysis , Biomass , Carbohydrates/analysis , Nitrogen/analysis , Trifolium
SELECTION OF CITATIONS
SEARCH DETAIL
...