Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; : 119458, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925466

ABSTRACT

Methane is a short-lived greenhouse gas but has a far greater warming effect than carbon dioxide. At the same time, the livestock sector serves as a large contributor to global emissions of anthropogenic methane. Herein, this work aimed to use cultivated seaweed supplementation to reduce methane emissions and investigate the potential influencing mechanism. To evaluate the feasibility, two cultivated seaweeds, Laminaria japonica Aresch, and Porphyra tenera, along with the enzymatic hydrolysates derived from L. japonica, underwent in vitro trials, and they were both added into corn silage feed (CSF) with different concentrations (1%, 5%, and 10% of CSF) for methane reduction evaluation. The results indicated that >75% and 50% reductions in methane production were observed for the seaweeds and seaweed enzymatic hydrolysates in 9- and 30-day, respectively. Combined high-throughput sequencing and multivariate analysis revealed that supplementation with seaweed and seaweed enzymatic hydrolysates had a notable impact on the prokaryotic community structure. Mantel tests further revealed that significant correlations between the prokaryotic community and methane accumulation (P < 0.05), implying the prokaryotic community plays a role in reducing methane emissions within the rumen. Correspondingly, the networks within the prokaryotic community unveiled the crucial role of propionate/butyrate-producing bacteria in regulating methane emissions through microbial interactions. The predicted function of the prokaryotic community exhibited a significant reduction in the presence of the narB gene in seaweed-supplemented treatments. This reduction may facilitate an increased rate of electron flow toward the nitrate reduction pathway while decreasing the conversion of H2 to methane. These results indicated the supplementation of cultivated seaweeds and the enzymatic hydrolysates has the potential to reshape the community structure of rumen microbial communities, and this alteration appears to be a key factor contributing to their methane production-reduction capability.

2.
Int J Biol Macromol ; 273(Pt 1): 133013, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852728

ABSTRACT

High conductive and freeze-resistant hydrogels with adhesion function are ideal candidates for soft electronic devices. However, it remains a challenge to design appropriate conductive nanofillers to endow hydrogels with all these characteristics. Liquid metal (LM) exhibits exceptional electrical conductivity and convenient processability, rendering it a highly promising contender. Cellulose nanofibrils (CNFs) were employed as the interfacial stabilizer in synthesizing stable CNFs encapsulated LM solutions. Then the lignin was further coated on the surface of CNFs-LM (LCL) to prepare lignin-coated hybrid hydrogels. The obtained LCL displayed outstanding water-dispersible stability and were promising conductive nanofillers for hydrogels. During the fabrication of poly N-(hydroxymethyl) acrylamide (PHA) hydrogels, the LM was dispersed into LM particles with smaller sizes, leading to highly conductive LCL-PHA hydrogels (0.38 S·m-1). The prepared LCL-PHA hydrogels exhibited exceptional mechanical properties, including a strain at a break of 134.6 %, stress at a break of 22.7 Kpa, and a toughness of 16.3 KJ·m-3. Additionally, the LCL-PHA hydrogels demonstrated favorable electrical conductivity and adhesion. Notably, even after being subjected to freezing at -20 °C for 24 h, they remained suitable for effective real-time monitoring of all types of human activities, demonstrating superior environmental stability.

3.
J Ethnopharmacol ; 283: 114694, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34601084

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The flower buds of Tussilago farfara L. (Abbreviated as FTF) were widely used in traditional Chinese medicine (TCM) to treat respiratory diseases, including asthma, dry throat, great thirst, turbid saliva, stinky pus, and coughs caused by various causes. AIM OF STUDY: The aim of study is to explore the efficiency of FTF in vitro and in vivo for the treatment of lung inflammation, and to illustrate the possible mechanisms of FTF in treating inflammation-related respiratory diseases targeting NOD-like receptor 3 (NLRP3) inflammasome, nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear transcription factor-κB (NF-κB). METHODS: Lung inflammation model in vivo was induced by exposure of mice to cigarette smoke (CS) for two weeks. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), inflammatory factors, and histology in lung tissues were investigated in presence or absence of ethanol extract of the flower buds of T. farfara L. (FTF-EtOH). In the cell-based models, nitric oxide (NO) assay, flow cytometry assay, enzyme-linked immunosorbent assay (Elisa), and glutathione (GSH) assay were used to explore the anti-inflammatory and anti-oxidant effects of FTF-EtOH. Possible anti-inflammatory mechanisms of FTF targeting NLRP3 inflammasome, Nrf2, and NF-κB have been determined using western blot, quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR), immunofluorescence assay, nuclear and cytoplasmic extraction, and ubiqutination assay. RESULTS: FTF-EtOH suppressed CS-induced overproduction of inflammatory factors [e.g., tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß)], and upregulation of the content of intracellular MDA in the lung homogenate of mice. In cell-based models, FTF-EtOH reduced the lipopolysaccharide (LPS)-induced overproduction of inflammatory factors, and attenuated the CS extract-induced overgeneration of reactive oxygen species (ROS). Furthermore, FTF-EtOH up-regulated Nrf2 and its downstream genes through enhancing the stability of Nrf2 protein, and inhibited the activation of NF-κB and NLRP3 inflammasome, which have been confirmed by detecting the protein levels in the mouse model. CONCLUSIONS: FTF-EtOH effectively attenuated lung inflammation in vitro and in vivo. The protection of FTF-EtOH against inflammation was produced by activation of Nrf2 and inhibitions of NF-κB and NLRP3 inflammasome. These datas definitely support the ethnopharmacological use of FTF as an anti-inflammatory drug for treating respiratory diseases in TCM.


Subject(s)
Inflammation/drug therapy , Lung Diseases/drug therapy , Phytotherapy , Plant Extracts/therapeutic use , Smoke/adverse effects , Tussilago/chemistry , Animals , Cell Line , Cell Survival/drug effects , Epithelial Cells/drug effects , Flowers/chemistry , Humans , Inflammation/chemically induced , Lung Diseases/chemically induced , Male , Mice , Mice, Inbred C57BL , Plant Extracts/chemistry , Respiratory Mucosa/cytology , Nicotiana
4.
Nat Prod Res ; 36(20): 5206-5212, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34180325

ABSTRACT

Two new physalins, 7α-hydroxy-5-deoxy-4-dehydrophysalin IX (1) and 5-deoxy-4-dehydrophysalin IX (2), together with six known compounds, luteolin (3), luteolin-7-O-glucoside (4), neoechinulin A (5), 3-(4-hydroxy-3-methoxyphenyl)-N-(4-methylphenyl)-2-propenamide (6), physalin D (7) and blumenol A (8) were isolated from Physalis alkekengi L. var. franchetii (Mast.) Makino. Their structures were elucidated by NMR spectroscopic analysis, HR-ESI-MS, X-ray crystallographic data analysis and comparison with the known compounds. Among them, compounds 5 and 6 were isolated from the genus Physalis for the first time. Compound 1 exhibited weak NAD(P)H: quinone reductase (QR) inducing activity.


Subject(s)
Physalis , Quinone Reductases , Luteolin , NAD , Physalis/chemistry , Plant Extracts/chemistry
5.
Chem Biodivers ; 18(11): e2100302, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34436820

ABSTRACT

The rhizome of Ligusticum chuanxiong Hort. has been widely used for the therapy of diabetic nephropathy (DN) in traditional Chinese medicine (TCM). The nuclear transcription factor erythroid 2-related factor (Nrf2) is a potential target for treating DN. The purpose of this research was to study the chemical constituents from the rhizome of L. chuanxiong, evaluate their Nrf2 inducing activity, and find the molecules with potential therapeutic effect against DN. In this study, two new phthalides (1-2) along with twenty-seven known constituents were obtained from the rhizome of L. chuanxiong. Their structures were elucidated through various spectroscopic methods. Twelve constituents, including eight phthalides (2, 5, 6,10-13, 14) and four other compounds (17, 18, 20,28), stimulated NAD(P)H: quinone reductase (QR) activity, suggesting that these bioactive constituents were potential Nrf2 activators. Among the isolated compounds, phthalide levistolide A (LA, 14) upregulated the protein levels of Nrf2, NQO1, and γ-GCS in a dose-dependent manner. Our results implied that the clinical application of the rhizome of L. chuanxiong as an anti-DN drug in TCM might be attributed to the Nrf2 inducing effect of phthalides. Thus, phthalides is a group of promising leading molecules for discovering anti-DN agents.


Subject(s)
Benzofurans/pharmacology , Diabetic Nephropathies/drug therapy , Hypoglycemic Agents/pharmacology , Ligusticum/chemistry , NF-E2-Related Factor 2/metabolism , Rhizome/chemistry , Benzofurans/chemistry , Benzofurans/isolation & purification , Diabetic Nephropathies/metabolism , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Molecular Structure
6.
J Nat Prod ; 84(4): 1210-1215, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33677971

ABSTRACT

An investigation of the chemical composition of Chinese liverworts led to the isolation of six new caged clerodane-type diterpenoids, scaparins A-C (1-3) from Scapania koponenii and scaparins D-F (4-6) from S. verrucosa. An unknown ent-trachylobane diterpenoid (7) and three known terpenoid derivatives (8-10) were obtained from S. verrucosa. The structures of the compounds were established on the basis of physical data (IR, UV, HRESIMS, and 1D and 2D NMR), and the absolute configurations were unequivocally confirmed by comparison of the experimental and calculated electronic circular dichroism spectra. Preliminary bioassays showed that compounds 1-7 exhibited moderate to weak quinone reductase-inducing activity in Hepa-1c1c7 cells.


Subject(s)
Hepatophyta/chemistry , Terpenes/chemistry , Animals , Cell Line, Tumor , China , Diterpenes, Clerodane , Mice , Molecular Structure , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Terpenes/isolation & purification
7.
J Ethnopharmacol ; 273: 113950, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-33610713

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Thesium chinense Turcz. has been used to treat mastitis, pulmonitis, tonsillitis, iaryngopharyngitis and upper respiratory tract infections in the indigenous medicine of China for a long history. Presently, several pharmaceutics prepared by this medical herb have been clinically used for the therapy of infectious diseases. AIM OF THE REVIEW: This review aims to comprehensively summarize the current researches on the ethnomedical, phytochemical and pharmacological aspects of T. chinense, and discuss their possible opportunities for the future research. MATERIALS AND METHODS: Extensive database searches, including Web of Science, SciFinder, Google Scholar and China Knowledge Resource Integrated, were performed using keywords such as 'Thesium chinense', 'Bai Rui Cao', and their chemical constituents. In addition, local classic herbal literature on ethnopharmacology and relevant textbooks were consulted to provide a comprehensive survey of this ethnomedicine. RESULTS: Thirty four chemical constituents, including flavonoids, alkaloids, and terpenoids, have been identified from T. chinense. Of which, flavonoids are the predominant and characteristic constituents. The crude extracts, the purified constituents, and commercial available pharmaceutics have displayed diverse in vitro and in vivo pharmacological functions (e.g. anti-inflammation, antimicrobial activity, analgesic effect, hepaprotection), and are particularly useful as a potential therapeutic agent against inflammation-related diseases. CONCLUSIONS: T. chinense is an important ethnomedical medicine and possesses a satisfying effect for treating inflammation, microbial infection, and upper respiratory diseases. It has received plenty of researches on its phytochemical and pharmacological aspects since 1970s. These findings definitely establish the link between chemical composition and pharmacological application, and support the ethnomedical use of T. chinense in the indigenous medicine of China. However, chemical composition of this plant and the molecular mechanisms of purified constituents have not been comprehensively investigated, and thus the trace constituents and the therapeutic targets of bioactive constituents deserve a further exploration. Collectively, the researchers should pay more attention to a better understanding and application of this ethnomedical plant.


Subject(s)
Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Santalaceae/chemistry , Animals , Clinical Studies as Topic , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/toxicity , Humans , Medicine, Chinese Traditional , Phytochemicals/therapeutic use , Phytochemicals/toxicity
8.
Planta Med ; 86(16): 1191-1203, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32668478

ABSTRACT

Physalis Calyx seu Fructus, a traditional Chinese medicine consisting of the calyxes and fruits of Physalis alkekengi var. franchetii, has been used as therapy for inflammation-related respiratory diseases such as excessive phlegm, cough, sore throat, and pharyngitis for a long history in China. The aim of the present study was to investigate the chemical constituents of Physalis Calyx seu Fructus and identify the bioactive constituents responsible for its traditional application as therapy for inflammation-related diseases. In the present study, one new phenylpropanoid (1: ), two new steroids (17: and 18: ), together with 55 known constituents have been purified from the EtOH extract of Physalis Calyx seu Fructus. Among them, seven and twelve known constituents were isolated for the first time from Physalis Calyx seu Fructus and the genus Physalis, respectively. Fourteen constituents, including steroids [physalins (5:  - 9, 12:  - 14: , and 15: ) and ergostane (21: )], a sesquiterpenoid (35: ), alkaloids (36: and 37: ), and a flavonoid (44: ), showed inhibitory effects against oxidative stress. Ten constituents, including steroids (5, 6, 8, 13: , and 15: ), sesquiterpenoids (34: and 35: ), alkaloids (37: and 41: ), and a flavonoid (43: ), were found be potential anti-inflammatory constituents of this medicinal plant. The inhibition of oxidative stress and inflammatory response may be related to the regulation of Nrf2 and nuclear factor-κB pathways. The ethnomedical use of Physalis Calyx seu Fructus as a treatment for respiratory diseases might be attributed to the combined inhibitory effects of steroids, alkaloids, sesquiterpenoids, and flavonoids against oxidative stress and inflammatory response.


Subject(s)
Physalis , China , Flowers , Fruit , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...