Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Eye Res ; 143: 132-40, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26518178

ABSTRACT

This study investigated the role of autocrine mechanisms in the anti-apoptotic effects of human granulocyte colony-stimulating factor (G-CSF) on retinal ganglion cells (RGCs) after optic nerve (ON) crush. We observed that both G-CSF and G-CSF receptor (G-CSFR) are expressed in normal rat retina. Further dual immunofluorescence staining showed G-CSFR immunoreactive cells were colocalized with RGCs, Müller cells, horizontal and amacrine cells. These results confirm that G-CSF is an endogenous ligand in the retina. The semi-quantitative RT-PCR finding demonstrated the transcription levels of G-CSF and G-CSFR were up-regulated after ON crush injury. G-CSF treatment further increased and prolonged the expression level of G-CSFR in the retina. G-CSF has been shown to enhance transdifferentiation of the mobilized hematopoietic stem cells into tissue to repair central nervous system injury. We test the hypothesis that the hematopoietic stem cells recruited by G-CSF treatment can transdifferentiate into RGCs after ON crush by performing sublethal irradiation of the rats 5 days before ON crush. The flow cytometric analysis showed the number of CD34 positive cells in the peripheral blood is significantly lower in the irradiated, crushed and G-CSF-treated group than the sham control group or crush and G-CSF treated group. Nevertheless, the G-CSF treatment enhances the RGC survival after sublethal irradiation and ON crush injury. These data indicate that G-CSF seems unlikely to induce hematopoietic stem cell transdifferentiation into RGCs after ON crush injury. In conclusion, G-CSF may serve an endogenous protective signaling in the retina through direct activation of intrinsic G-CSF receptors and downstream signaling pathways to rescue RGCs after ON crush injury, exogenous G-CSF administration can enhance the anti-apoptotic effects on RGCs.


Subject(s)
Autocrine Communication/drug effects , Granulocyte Colony-Stimulating Factor/pharmacology , Nerve Crush , Optic Nerve Injuries/prevention & control , Retinal Ganglion Cells/cytology , Animals , Apoptosis , Cell Count , Cell Survival/physiology , Cell Transdifferentiation/drug effects , Cytoprotection , Flow Cytometry , Fluorescent Antibody Technique, Indirect , Hematopoietic Stem Cells , Immunoblotting , Injections, Subcutaneous , Male , Rats, Wistar , Real-Time Polymerase Chain Reaction , Receptors, Granulocyte Colony-Stimulating Factor/metabolism , Retinal Ganglion Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...