Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 11: 717606, 2021.
Article in English | MEDLINE | ID: mdl-34604053

ABSTRACT

BACKGROUND: Matrix metalloproteinase 14 (MMP14) is a member of the MMP family, which interacts with tissue inhibitors of metalloproteinase (TIMPs), and is involved in normal physiological functions such as cell migration, invasion, metastasis, angiogenesis, and proliferation, as well as tumor genesis and progression. However, there has been a lack of relevant reports on the effect of MMP14 across cancers. This study aims to explore the correlation between MMP14 and pan-cancer prognosis, immune infiltration, and the effects of pan-cancer gene mismatch repair (MMR), microsatellite instability (MSI), tumor mutational burden (TMB), DNA methylation, and immune checkpoint genes. METHODS: In this study, we used bioinformatics to analyze data from multiple databases, including The Cancer Genome Atlas (TCGA), ONCOMINE, and Kaplan-Meier plotter. We investigated the relationship between the expression of MMP14 in tumors and tumor prognosis, the relationship between MMP14 expression and tumor cell immune infiltration, and the relationship between MMR gene MMR, MSI, TMB, DNA methylation, and immune checkpoint genes. RESULTS: MMP14 expression is highly associated with the prognosis of a variety of cancers and tumor immune invasion and has important effects on pan oncologic MMR, MSI, TMB, DNA methylation, and immune checkpoint genes. CONCLUSION: MMP14 is highly correlated with tumor prognosis and immune invasion and affects the occurrence and progression of many tumors. All of these results fully indicate that MMP14 may be a biomarker for the prognosis, diagnosis, and treatment of many tumors and provide new ideas and direction for subsequent tumor immune research and treatment strategies.

2.
Oncol Lett ; 22(1): 536, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34084216

ABSTRACT

Adamantinomatous craniopharyngioma (ACP) is considered a benign intracranial tumor, but it can also exhibit aggressive characteristics. Due to its unique location in the suprasellar, which brings it close to important nerves and vascular structures, ACP can often lead to significant neuroendocrine diseases. The current treatments primarily include surgical intervention, radiation therapy or a combination of the two, but these can lead to serious complications and adversely affect the quality of life of patients. Thus, it is important to identify effective and safe alternatives. Recently, studies have focused on the tumor genome, transcriptome and proteome in an attempt to identify potential therapeutic targets for clinical use. However, studies on this region of the CP are limited; thus, the present study focused on this region. The GSE94349 and GSE68015 datasets were downloaded from the Gene Expression Omnibus database and analyzed. In the in vitro studies, the effect of the matrix metalloproteinase (MMP)12 inhibitor, MMP408, on cell proliferation and protein expression was assessed. The results demonstrated that MMP408 effectively inhibited cell proliferation and migration of ACP cells, and decreased the expression levels of the related proteins. Thus, MMP12 may be used as a potential therapeutic target for the treatment of ACP.

3.
Front Cell Neurosci ; 14: 242, 2020.
Article in English | MEDLINE | ID: mdl-32903819

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) are produced during abnormal and normal physiological conditions. Understanding the expression profile of microRNA (miRNA) in plasma-derived small extracellular vesicles (sEVs) and their roles in subarachnoid hemorrhage (SAH) that cause cerebral vasospasm (CVS) is imperative. METHODS: Sprague Dawley rats (250-300 g) were allocated to sham or SAH groups established using endovascular perforation method. miRNA expression profiles of plasma sEVs in both groups (each n = 4) were evaluated using next-generation sequencing (NGS). RESULTS: There were 142 microRNAs (miRNAs) significantly expressed differently between the two groups, of which 73 were up-regulated while 69 were down-regulated in SAH sEVs compared with those of sham (p < 0.05; fold change ≥ 2). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analyses of differently expressed (DE) miRNAs revealed signaling pathways and target genes (TGs) in the SAH group. rno-miR-185-5p, rno-miR-103-3p, rno-miR-15b-3p, rno-miR-93-5p, and rno-miR-98-5p were the top five most up-regulated sEVs miRNAs. CONCLUSION: Our results suggest that miRNA can be selectively packaged into sEVs under SAH, and this could help develop potential targets for the prevention, diagnosis, and treatment of CVS after this condition.

4.
Colloids Surf B Biointerfaces ; 69(1): 26-30, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19056251

ABSTRACT

Adsorption and desorption of salmon sperm DNA on bacteria (Bacillus thuringiensis, Pseudomonas putida), two different colloidal fractions (organic and inorganic clay) from an Alfisol, minerals (montmorillonite, kaolinite and goethite) and colloid-bacteria composites were studied. Similar adsorption capacity and affinity of DNA were observed on two bacterial cells. However, the two bacterial strains played different roles in affecting the adsorption of DNA on the composites of soil colloidal particles with bacteria. The introduction of B. thuringiensis in soil colloids and minerals systems dramatically promoted DNA adsorption on colloidal particles especially organic clay, while P. putida decreased the adsorption of DNA on kaolinite and goethite. Electrostatic force and ligand exchange are regarded to be the major driving forces involved in the adsorption of DNA on bacterial cells, montmorillonite, soil colloids and goethite. Presence of bacteria enhanced the proportion of DNA adsorption on soil colloidal particles by electrostatic force and depressed that by ligand exchange process. Information obtained in this study is of fundamental significance for the understanding of the ultimate fate of extracellular DNA in soil systems.


Subject(s)
Bacillus thuringiensis/metabolism , Colloids/metabolism , DNA/metabolism , Minerals/metabolism , Pseudomonas putida/metabolism , Soil , Adsorption , Animals , Bacillus thuringiensis/cytology , Bentonite/metabolism , Hydrogen-Ion Concentration , Iron Compounds/metabolism , Kaolin/metabolism , Male , Phosphates/metabolism , Pseudomonas putida/cytology , Salmon , Sodium Chloride/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...