Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 18(5): e202201242, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36644999

ABSTRACT

Flow batteries (FBs) have been demonstrated in several large-scale energy storage projects, and are considered to be the preferred technique for large-scale long-term energy storage in terms of their high safety, environmental friendliness, and long life, including all-vanadium flow batteries (VFBs) and Fe-Cr flow batteries (ICFBs). As the electrochemical reaction site, the electrode parameters, such as the specific surface area, active site, and so on, have a significant impact on the flow battery performance and reliability. Extensive research has been carried out on electrode modification to improve the current density and energy efficiency of the FBs. In this review, the reaction mechanisms of VFBs and ICFBs are discussed in detail firstly, and then the electrodes modification methods are overviewed and summarized from four aspects: self-modification, carbon-based electrocatalysts, metal-based electrocatalysts and composite electrocatalysts. Finally, the recent catalytic mechanism, in situ characterization technology, and future research directions are presented.

2.
Polymers (Basel) ; 14(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683919

ABSTRACT

The iron-chromium flow battery (ICFB), the earliest flow battery, shows promise for large-scale energy storage due to its low cost and inherent safety. However, there is no specific membrane designed that meets the special requirements of ICFBs. To match the harsh operation parameters of ICFBs, we designed and fabricated a composite membrane with high mechanical, chemical, and thermal stability. In the design, a commercial porous polyethylene membrane is selected as the framework material, offering high mechanical stability and reducing the cost. Meanwhile, the Nafion resin is filled in the pores of a porous membrane, which inhibits the transfer of redox-active ions and creates the proton channels via hydrophobic/hydrophilic phase separation. As a result, the composite membrane exhibits high conductivity, selectivity, and stability, especially with almost no swelling at high operating temperatures. Thus, an ICFB with the prepared membrane exhibits a coulombic efficiency of 93.29% at the current density of 80 mA cm-2 and runs stably for over 300 cycles. This work provides an easy method to fabricate high-performance and low-cost membranes specifically for ICFBs and has the potential to promote the development of ICFBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...