Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 846
Filter
1.
ACS Chem Biol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829020

ABSTRACT

N-Pyridinylthiophene carboxamide (compound 21) displays activity against peripheral nerve sheath cancer cells and mouse xenografts by an unknown mechanism. Through medicinal chemistry, we identified a more active derivative, compound 9, and found that only analogues with structures similar to nicotinamide retained activity. Genetic screens using compound 9 found that both NAMPT and NMNAT1, enzymes in the NAD salvage pathway, are necessary for activity. Compound 9 is metabolized by NAMPT and NMNAT1 into an adenine dinucleotide (AD) derivative in a cell-free system, cultured cells, and mice, and inhibition of this metabolism blocked compound activity. AD analogues derived from compound 9 inhibit IMPDH in vitro and cause cell death by inhibiting IMPDH in cells. These findings nominate these compounds as preclinical candidates for the development of tumor-activated IMPDH inhibitors to treat neuronal cancers.

2.
Immune Netw ; 24(2): e3, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38725674

ABSTRACT

Cigarette smoke extract (CSE)-treated mouse airway epithelial cells (MAECs)-derived exosomes accelerate the progression of chronic obstructive pulmonary disease (COPD) by upregulating triggering receptor expressed on myeloid cells 1 (TREM-1); however, the specific mechanism remains unclear. We aimed to explore the potential mechanisms of CSE-treated MAECs-derived exosomes on M1 macrophage polarization and pyroptosis in COPD. In vitro, exosomes were extracted from CSE-treated MAECs, followed by co-culture with macrophages. In vivo, mice exposed to cigarette smoke (CS) to induce COPD, followed by injection or/and intranasal instillation with oe-TREM-1 lentivirus. Lung function and pathological changes were evaluated. CD68+ cell number and the levels of iNOS, TNF-α, IL-1ß (M1 macrophage marker), and pyroptosis-related proteins (NOD-like receptor family pyrin domain containing 3, apoptosis-associated speck-like protein containing a caspase-1 recruitment domain, caspase-1, cleaved-caspase-1, gasdermin D [GSDMD], and GSDMD-N) were examined. The expression of maternally expressed gene 3 (MEG3), spleen focus forming virus proviral integration oncogene (SPI1), methyltransferase 3 (METTL3), and TREM-1 was detected and the binding relationships among them were verified. MEG3 increased N6-methyladenosine methylation of TREM-1 by recruiting SPI1 to activate METTL3. Overexpression of TREM-1 or METTL3 negated the alleviative effects of MEG3 inhibition on M1 polarization and pyroptosis. In mice exposed to CS, EXO-CSE further aggravated lung injury, M1 polarization, and pyroptosis, which were reversed by MEG3 inhibition. TREM-1 overexpression negated the palliative effects of MEG3 inhibition on COPD mouse lung injury. Collectively, CSE-treated MAECs-derived exosomal long non-coding RNA MEG3 may expedite M1 macrophage polarization and pyroptosis in COPD via the SPI1/METTL3/TREM-1 axis.

3.
Int J Womens Health ; 16: 755-767, 2024.
Article in English | MEDLINE | ID: mdl-38706691

ABSTRACT

Objective: Immune cells play a key role in tumor microenvironment. The purpose of this study was to investigate the infiltration and clinical indication of immune cells including their combined prognostic value in microenvironment of triple negative breast cancer. Methods: We investigated 100 patients with triple negative breast cancer by Opal/Tyramide Signal Amplification multispectral immunofluorescence between 2003 and 2017 at Zhejiang Provincial people's Hospital. Intratumoral and stromal immune cells of triple negative breast cancer were classified and quantitatively analyzed. Survival outcomes were compared using the Kaplan-Meier method and further analyzed with multivariate analysis. Results: Infiltration level of stromal B lymphocytes, stromal and intratumoral CD8+ T cells, stromal CD4+ T cells, stromal PD-L1 and intratumoral tumor associated macrophages 2 cells were shown as independent factors affecting disease-free survival and overall survival in univariate analysis. Stromal B lymphocytes, T stage, N stage and pathological type were independent predictive factors for both DFS and OS in multivariate analysis. We firstly found that patients with B lymphocytes-enriched subtypes have a better prognosis than those with T lymphocytes-enriched subtypes and tumor-associated macrophage-enriched subtypes. Conclusion: The present study identified a bunch of immune targets and subtypes, which could be exploited in future combined immunotherapy/chemotherapy strategies for triple negative breast cancer patients.

4.
Curr Probl Cancer ; 50: 101098, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704949

ABSTRACT

OBJECTIVE: To investigate the relationship between clinical pathological characteristics, pretreatment CT radiomics, and major pathologic response (MPR) of non-small cell lung cancer (NSCLC) after neoadjuvant chemoimmunotherapy, and to establish a combined model to predict the major pathologic response of neoadjuvant chemoimmunotherapy. METHODS: A retrospective study of 211 patients with NSCLC who underwent neoadjuvant chemoimmunotherapy and surgical treatment from January 2019 to April 2021 was conducted. The patients were divided into two groups: the MPR group and the non-MPR group. Pre-treatment CT images were segmented using ITK SNAP software to extract radiomics features using Python software. Then a radiomics model, a clinical model, and a combined model were constructed and validated using a receiver operating characteristic (ROC) curve. Finally, Delong's test was used to compare the three models. RESULTS: The radiomics model achieved an AUC of 0.70 (95 % CI: 0.62-0.78) in the training group and 0.60 (95 % CI: 0.45-0.76) in the validation group. RECIST assessment results were screened from all clinical characteristics as independent factors for MPR with multivariate logistic regression analysis. The AUC of the clinical model for predicting MPR was 0.66 (95 % CI: 0.59-0.73) in the training group and 0.77 (95 % CI: 0.66-0.87) in the validation group. The combined model with combined radiomics and clinicopathological characteristics achieved an AUC was 0.76 (95 % CI: 0.68-0.84) in the training group, and 0.80 (95 % CI: 0.67-0.92) in the validation group. Delong's test showed that the AUC of the combined model was significantly higher than that of the radiomics model alone in both the training group (P = 0.0067) and the validation group (P = 0.0009).The calibration curve showed good agreement between predicted and actual MPR. Clinical decision curve analysis showed that the combined model was superior to radiomics alone. CONCLUSIONS: Radiomics model can predict MPR in NSCLC after neoadjuvant chemoimmunotherapy with similar accuracy to RECIST assessment criteria. The combined model based on pretreatment CT radiomics and clinicopathological features showed better predictive power than independent radiomics model or independent clinicopathological features, suggesting that it may be more useful for guiding personalized neoadjuvant chemoimmunotherapy treatment strategies.

5.
Front Psychol ; 15: 1333677, 2024.
Article in English | MEDLINE | ID: mdl-38784628

ABSTRACT

For higher vocational students, the college stage is an important period in their career development, and the college experience plays an important role in the relationship between their proactive personality and career adaptability, which in turn has a significant impact on their future career development. From the perspective of social cognitive career theory and taking 476 vocational students as samples, this paper explores the mediating role of college experience between proactive personality and career adaptability of vocational college students. The college experience scale is revised for higher vocational students, and it is verified to have good reliability and validity. SPSS and Amos were used to conduct correlation analysis,and the PROCESS macro was used for mediating effect analysis. The results show that the college experience of vocational students plays a partial mediating role in the effect of proactive personality on career adaptability. This work innovatively uses social cognitive career theory to explore the role of college experience in the relationship between proactive personality and career adaptability among vocational students. The theoretical models are established and empirical verification is conducted, confirming that higher vocational students' college experience can affect their career adaptability. These results provide empirical evidence for vocational colleges to improve the career guidance of college students, and intervention measures are proposed to enhance students' career adaptability during school years, thus promoting their sustainable development.

6.
Oral Oncol ; 153: 106814, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714115

ABSTRACT

OBJECTIVES: Exploration into the use of vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) inhibitors alongside programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors has been undertaken for treating recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC). We conducted a meta-analysis to provide a more precise assessment of the efficacy and safety of this integrated approach in managing R/M HNSCC. METHODS: A systematic exploration encompassing PubMed, Embase, the Cochrane Library, and Web of Science databases was undertaken to figure out relevant studies. It was attempted to analyze critical endpoints, such as overall response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and adverse events (AEs) utilizing a random-effects model. RESULTS: Eleven studies, encompassing 413 patients, were analyzed. The combined data revealed an ORR of 41 % (95 % CI: 34-49 %), a DCR of 67 % (95 % CI: 51-83 %), a median PFS of 5.87 months (95 % CI: 3.90-7.85), and a median OS of 9.63 months (95 % CI: 6.78-12.49). Furthermore, the rates for 1-year PFS and OS were 45 % (95 % CI: 27-64 %) and 65 % (95 % CI: 49-81 %), respectively. The occurrence of grade 3 or higher adverse events related to the drugs was 20 % (95 % CI: 10-30 %). Subgroup analysis within the tyrosine kinase inhibitor (TKI) group revealed an ORR of 47 % (95 % CI: 39 %-55 %) and a DCR of 67 % (95 % CI: 46 %-88 %). CONCLUSIONS: In summary, combining VEGF/VEGFR inhibitors with PD-1/PD-L1 inhibitors shows considerable effectiveness with manageable side effects in cases with R/M HNSCC. SYSTEMATIC REVIEW REGISTRATION: Registered with the International Prospective Register of Systematic Reviews, identifier CRD42023486345.


Subject(s)
Receptors, Vascular Endothelial Growth Factor , Squamous Cell Carcinoma of Head and Neck , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Squamous Cell Carcinoma of Head and Neck/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , B7-H1 Antigen/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Head and Neck Neoplasms/drug therapy , Male , Female
7.
Talanta ; 276: 126257, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38781913

ABSTRACT

Alkyl imidazolium ionic liquids (Cn[MIM]), initially heralded as eco-friendly green solvents for diverse industrial applications, have increasingly been recognized fortheir biodegradability challenges and multiple biotoxicity. Despite potential health risks, research into the effects of Cn[MIM] on human health remains scarce, particularly regarding their detection in biological serum samples. This study validated a matrix-matched calibration quantitative method that utilizes solid-phase extraction (SPE) coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The method was used to analyze the presence of 10 ionic liquids (ILs) with varying alkyl carbon chain lengths (C2-C12) across 300 human serum samples. Efficient separation was achieved using optimized SPE conditions and a BEH C18 column with an appropriate mobile phase. Results demonstrated a strong linear relationship (0.05-100 ng/mL; R2 = 0.995-0.999), with detection and quantification limits with detection and quantification limits ranging from 0.001 to 0.107 ng/mL and 0.003-0.355 ng/mL, respectively. Intraday and inter-day precisions were 0.85-6.99 % and 1.50-7.46 %, with recoveries between 82 and 113 %. The validated method detected C6MIM in 19 % of samples and C8MIM in 8.3 % of samples, with concentrations ranging from 0.02 to 111.70 µg/L and 0.09-16.99 µg/L, respectively, suggesting a potential risk of human exposure. This underscores the importance of robust detection methods in monitoring environmental and human health impacts of alkyl imidazolium compounds.

8.
J Hazard Mater ; 473: 134599, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38788569

ABSTRACT

The application of disposable tableware has increased substantially in recent times due to the rapidly growing food delivery business in China. Synthetic phenolic antioxidants (SPAs) are widely used in food contact materials (FCMs) to delay the process of oxidation; however, their compositions, concentrations, and potential health hazards remain unclear. Therefore, FCMs comprised of five materials obtained from 19 categories (n = 118) in China were analyzed for SPAs concentrations. FCMs have been found to contain a variety of SPAs, with ∑SPAs concentrations ranging from 44.18 to 69,485.12 µg/kg (median: 2615.63 µg/kg). The predominant congeners identified in the sample include 2,4-di-tert-butylphenol (2,4-DTBP), 2,6-di-tert-butylphenol (2,6-DTBP), and 2,6-di-tert-butyl-p-benzoquinone (BHT-Q) with a median concentration of 885.75, 555.45 and of 217.44 µg/kg, respectively. Milky tea paper cups, instant noodle buckets, milky teacups, and disposable cups showed high levels of SPAs. 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (AO 2246) was predominantly detected in polyethylene and polyethylene terephthalate-based products. The migration test identified disposable plastic cups and bowls as the predominant FCMs and 2,4-DTBP as the dominant SPA. The exposure risk of SPAs decreased with age. In children, the estimated daily intake of ∑SPAs from FCMs was determined to be 17.56 ng/kg body weight/day, which was 8.3 times higher than that of phthalic acid esters. The current findings indicate the potential ingestion risk of SPAs during the daily life application of multiple FCM categories.

9.
Ren Fail ; 46(1): 2356023, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38785317

ABSTRACT

Glycyrrhizin (GL) has immunoregulatory effects on various inflammatory diseases including hepatitis and nephritis. However, the mechanisms underlying the anti-inflammatory effect of GL on renal inflammation are not fully understood. Hepatorenal syndrome (HRS) is a functional acute renal impairment that occurs in severe liver disease, and we found that kidney injury also occurs in Con A-induced experimental hepatitis in mice. We previously found that GL can alleviate Con A-induced hepatitis by regulating the expression of IL-25 in the liver. We wanted to investigate whether GL can alleviate Con A-induced nephritis by regulating IL-25. IL-25 regulates inflammation by modulating type 2 immune responses, but the mechanism by which IL-25 affects kidney disease remains unclear. In this study, we found that the administration of GL enhanced the expression of IL-25 in renal tissues; the latter promoted the generation of type 2 macrophages (M2), which inhibited inflammation in the kidney caused by Con A challenge. IL-25 promoted the secretion of the inhibitory cytokine IL-10 by macrophages but inhibited the expression of the inflammatory cytokine IL-1ß by macrophages. Moreover, IL-25 downregulated the Con A-mediated expression of Toll-like receptor (TLR) 4 on macrophages. By comparing the roles of TLR2 and TLR4, we found that TLR4 is required for the immunoregulatory effect of IL-25 on macrophages. Our data revealed that GL has anti-inflammatory effects on Con A-induced kidney injury and that the GL/IL-25/M2 axis participates in the anti-inflammatory process. This study suggested that GL is a potential therapeutic for protecting against acute kidney injury.


Subject(s)
Disease Models, Animal , Glycyrrhizic Acid , Kidney , Macrophages , Animals , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Mice , Macrophages/metabolism , Macrophages/drug effects , Male , Kidney/pathology , Kidney/metabolism , Toll-Like Receptor 2/metabolism , Interleukins/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/metabolism , Interleukin-10/metabolism , Toll-Like Receptor 4/metabolism , Signal Transduction/drug effects , Interleukin-1beta/metabolism , Hepatorenal Syndrome/etiology , Hepatorenal Syndrome/drug therapy , Hepatorenal Syndrome/metabolism , Mice, Inbred C57BL , Nephritis/drug therapy , Nephritis/metabolism , Nephritis/etiology , Nephritis/prevention & control
10.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1431-1447, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783807

ABSTRACT

In recent years, there has been a frequent occurrence of various epidemics worldwide such as COVID-19, monkeypox, influenza, and others additionally, there has been an increase in the number of new patients diagnosed with various types of tumors. Traditional drugs have limited effectiveness against emerging infectious diseases, tumors, and autoimmune diseases. However, with the emergence of hybridoma technology, monoclonal antibodies have achieved extensive applications and antibody drugs are playing an important role in modern medicine. Monoclonal antibodies have undergone various development stages, starting from mouse-derived antibodies to human-mouse chimeric antibodies, humanized antibodies, and ultimately human antibodies. Throughout this process, their immunogenicity has gradually decreased, while their safety for human use steadily increased. Fully human antibodies are currently the safest form of antibody, because their sequences all come from human sources and they do not induce human anti-murine antibody reactions. With the advance of genetic engineering technology, flow cytometry coupled to single B cell gene amplification technology has made it easier to construct and screen for fully human monoclonal antibodies. The development of antibody drugs has provided new opportunities, and the market for monoclonal antibody drugs will further expand. This article reviews the research progress of monoclonal antibodies and presents information on the 163 monoclonal antibody drugs approved by the United States Food and Drug Administration (FDA) as of Oct 1st, 2023. The aim is to offer new insights for the development and production of monoclonal antibodies in China.


Subject(s)
Antibodies, Monoclonal , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Humans , Animals , Mice , United States Food and Drug Administration
11.
J Med Chem ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764175

ABSTRACT

Interfering with sterol biosynthesis is an important strategy for developing safe and effective antifungal drugs. We previously identified compound H55 as an allosteric inhibitor of the fungal-specific C-24 sterol methyltransferase Erg6 for treating Candida albicans infections. Herein, 62 derivatives of H55 were designed and synthesized based on target-ligand interactions to identify more active candidates. Among them, d28 displayed the most potent antivirulence ability (MHIC50 = 0.25 µg/mL) by targeting Erg6, exhibiting an 8-fold increase in potency compared with H55. Moreover, d28 significantly outperformed H55 in inhibiting cell adhesion and biofilm formation, and exhibited minimal cytotoxicity and negligible potential to induce drug resistance. Of note, the coadministration of d28 and other sterol biosynthesis inhibitors, such as tridemorph or terbinafine, demonstrated a strong synergistic antifungal action in vitro and in vivo in a murine skin infection model. These results support the potential application of d28 in the treatment of C. albicans infections.

12.
Physiol Behav ; : 114534, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38583548

ABSTRACT

The aim of this study was to investigate the effects of acupressure bladder meridian (ABM) on anxiety in rats. Chronic stress was induced rats to establish rat anxiety model. Shuttle experiment and open field experiments of were used to measure behaviors. The levels of cytokines in serum and hippocampus of rats were detected. Brain neurotransmitters (dopamine, 5- hydroxy tryptamine, norepinephrine) were detected by Enzyme linked immunosorbent assay (ELISA) kits. Immunohistochemistry and western blotting were used to detect MAPK and BDNF signal pathway in hippocampus of rats. ABM significantly improve behaviors, decreased cytokine levels in serum and hippocampus. ABM restored the changes of neurotransmitters and significantly decreased protein expressions of MAPK signal pathway and increased protein expressions of BDNF signal pathway in hippocampus of rats. The results shown that ABM significantly improved anxiety via inhibition of MAPK signal pathway and increased BDNF signal pathway.

13.
Nicotine Tob Res ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666790

ABSTRACT

INTRODUCTION: In this study, we aimed to systematically explore the relationship between smoking and idiopathic pulmonary fibrosis (IPF). METHODS: The PubMed, Web of Science and Embase databases were searched to systematically identify eligible studies. The Newcastle‒Ottawa Quality Assessment Scale (NOS) was used to evaluate the quality of the selected studies. The pooled odds ratio (OR) and survival hazard ratio (HR) were calculated with a random effects model using Stata 16.0 software. RESULTS: Thirty studies were enrolled. All of the included studies were considered to have intermediate or high quality. Nine studies were suitable for meta-analysis of ORs, and twenty-one studies were suitable for meta-analysis of survival HR. The pooled analysis revealed a significant difference in the risk of IPF between the smoking group and the never smoking group (OR 1.71, 95% CI 1.27-2.30, P < 0.001), indicating that smoking is a risk factor for IPF. When analyzing pooled survival HRs, never smoking was compared to former smoking or current smoking. Former smoking was shown to be a poor prognostic factor for IPF (HR 1.43, 95% CI 1.18-1.74, P < 0.001), but current smoking was not a significant factor. CONCLUSIONS: Our results indicated that smoking is a risk factor for IPF patients. IMPLICATIONS: In this study, we mainly concluded that smoking is a risk factor for IPF and that former smoking is a poor prognostic factor for IPF. To our knowledge, this is the first meta-analysis report focusing on the association between smoking per se and IPF. Through our current study, we hope to further raise awareness of the relationship between smoking and IPF.

14.
Cancer Med ; 13(7): e7161, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613173

ABSTRACT

BACKGROUND: Ovarian clear cell carcinoma (OCCC) represents a subtype of ovarian epithelial carcinoma (OEC) known for its limited responsiveness to chemotherapy, and the onset of distant metastasis significantly impacts patient prognoses. This study aimed to identify potential risk factors contributing to the occurrence of distant metastasis in OCCC. METHODS: Utilizing the Surveillance, Epidemiology, and End Results (SEER) database, we identified patients diagnosed with OCCC between 2004 and 2015. The most influential factors were selected through the application of Gaussian Naive Bayes (GNB) and Adaboost machine learning algorithms, employing a Venn test for further refinement. Subsequently, six machine learning (ML) techniques, namely XGBoost, LightGBM, Random Forest (RF), Adaptive Boosting (Adaboost), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), were employed to construct predictive models for distant metastasis. Shapley Additive Interpretation (SHAP) analysis facilitated a visual interpretation for individual patient. Model validity was assessed using accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and the area under the receiver operating characteristic curve (AUC). RESULTS: In the realm of predicting distant metastasis, the Random Forest (RF) model outperformed the other five machine learning algorithms. The RF model demonstrated accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and AUC (95% CI) values of 0.792 (0.762-0.823), 0.904 (0.835-0.973), 0.759 (0.731-0.787), 0.221 (0.186-0.256), 0.974 (0.967-0.982), 0.353 (0.306-0.399), and 0.834 (0.696-0.967), respectively, surpassing the performance of other models. Additionally, the calibration curve's Brier Score (95%) for the RF model reached the minimum value of 0.06256 (0.05753-0.06759). SHAP analysis provided independent explanations, reaffirming the critical clinical factors associated with the risk of metastasis in OCCC patients. CONCLUSIONS: This study successfully established a precise predictive model for OCCC patient metastasis using machine learning techniques, offering valuable support to clinicians in making informed clinical decisions.


Subject(s)
Adenocarcinoma, Clear Cell , Ovarian Neoplasms , Female , Humans , Bayes Theorem , Algorithms , Carcinoma, Ovarian Epithelial , Machine Learning
15.
Insects ; 15(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38535399

ABSTRACT

Microsporidiosis, which is caused by the pathogen Vairimorpha ceranae, is a prevalent disease in the honey bee (Apis mellifera) and might lead to significant adult honey bee mortality. In this study, we conducted an annual survey of the mature spore load of V. ceranae in the guts of nurse bees and forager bees in the apiary of National Chung Hsing University (NCHU) in Taiwan. The results indicated that, on average, honey bees hosted approximately 2.13 × 106 mature spore counts (MSCs)/bee in their guts throughout the entire year. The highest number of MSCs was 6.28 × 106 MSCs/bee, which occurred in April 2020, and the lowest number of MSCs was 5.08 × 105 MSCs/bee, which occurred in November 2020. Furthermore, the guts of forager bees had significantly higher (>58%) MSCs than those of nurse bees. To evaluate the potential of the probiotic to treat microsporidiosis, the lactic acid bacterium Leuconostoc mesenteroides TBE-8 was applied to honey bee colonies. A significant reduction (>53%) in MSCs following probiotic treatment was observed, indicating the potential of probiotic treatment for managing microsporidiosis. This research provided information on V. ceranae MSCs in the honey bee gut at NCHU in Taiwan and the MSCs' correlation with the annual season. Furthermore, a potential probiotic treatment for microsporidiosis was assessed for future management.

16.
Pak J Med Sci ; 40(4): 595-600, 2024.
Article in English | MEDLINE | ID: mdl-38545025

ABSTRACT

Objective: To explore the diagnostic value of video electroencephalography (VEEG) combined with magnetic resonance imaging diffusion tensor imaging (MRI-DTI) in epilepsy. Methods: In this retrospective observational study, clinical data of 60 patients who underwent both VEEG and MRI examinations at the Neurosurgery Department of Quzhou People's Hospital from December 2020 to March 2023 were retrospectively reviewed, and a total of 55 patients were finally included. We evaluated the diagnostic value of combining VEEG and MRI to determine seizure type, location of epileptic focus, and structural abnormalities of brain tissue, using surgical and pathological results as the gold standard. Results: The accuracy of the combined approach for determining the seizure type was 98.18%, which was higher than the accuracy of MRI (85.45%, P<0.05) or VEEG (81.82%, P<0.05) alone. The accuracy of joint examination for lesion location was 100.00%, which was higher than those of MRI (85.45%, P<0.05) or VEEG (83.64%, P<0.05) alone. Similar abnormal brain tissue structure detection rates was found for both MRI and VEEG (P>0.05). Conclusions: The application of MRI-DTI combined with VEEG to diagnose patients with epilepsy allows for the identification of abnormal structural changes in brain and the location of lesions. Combining both approaches can improve the diagnostic accuracy of each technique alone and provide a reference for the formulation and adjustment of disease management plans.

17.
Front Endocrinol (Lausanne) ; 15: 1324617, 2024.
Article in English | MEDLINE | ID: mdl-38529388

ABSTRACT

Background: Breast cancer (BC) is the most common and prominent deadly disease among women. Predicting BC survival mainly relies on TNM staging, molecular profiling and imaging, hampered by subjectivity and expenses. This study aimed to establish an economical and reliable model using the most common preoperative routine blood tests (RT) data for survival and surveillance strategy management. Methods: We examined 2863 BC patients, dividing them into training and validation cohorts (7:3). We collected demographic features, pathomics characteristics and preoperative 24-item RT data. BC risk factors were identified through Cox regression, and a predictive nomogram was established. Its performance was assessed using C-index, area under curves (AUC), calibration curve and decision curve analysis. Kaplan-Meier curves stratified patients into different risk groups. We further compared the STAR model (utilizing HE and RT methodologies) with alternative nomograms grounded in molecular profiling (employing second-generation short-read sequencing methodologies) and imaging (utilizing PET-CT methodologies). Results: The STAR nomogram, incorporating subtype, TNM stage, age and preoperative RT data (LYM, LYM%, EOSO%, RDW-SD, P-LCR), achieved a C-index of 0.828 in the training cohort and impressive AUCs (0.847, 0.823 and 0.780) for 3-, 5- and 7-year OS rates, outperforming other nomograms. The validation cohort showed similar impressive results. The nomogram calculates a patient's total score by assigning values to each risk factor, higher scores indicating a poor prognosis. STAR promises potential cost savings by enabling less intensive surveillance in around 90% of BC patients. Compared to nomograms based on molecular profiling and imaging, STAR presents a more cost-effective, with potential savings of approximately $700-800 per breast cancer patient. Conclusion: Combining appropriate RT parameters, STAR nomogram could help in the detection of patient anemia, coagulation function, inflammation and immune status. Practical implementation of the STAR nomogram in a clinical setting is feasible, and its potential clinical impact lies in its ability to provide an early, economical and reliable tool for survival prediction and surveillance strategy management. However, our model still has limitations and requires external data validation. In subsequent studies, we plan to mitigate the potential impact on model robustness by further updating and adjusting the data and model.


Subject(s)
Breast Neoplasms , Nomograms , Humans , Female , Prognosis , Breast Neoplasms/diagnosis , Cost-Benefit Analysis , Positron Emission Tomography Computed Tomography , Hematologic Tests
18.
Int Immunopharmacol ; 130: 111768, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38432149

ABSTRACT

Homograft rejection is the main cause of heart transplantation failure. The role of TLR2, a major member of the toll-like receptor (TLR) family, in transplantation rejection is has yet to be elucidated. In this study, we used a mouse model of acute cardiac transplantation rejection to investigate whether the TLR2 signalling pathway can regulate cardiac transplantation rejection by regulating alloreactive IL-17+γδT (γδT17) cells. We found that the expression of TLR2 on the surface of dendritic cells (DCs) and macrophages increased during acute transplantation rejection. In addition, our investigation revealed that γδT17 cells exert a significant influence on acute cardiac transplantation rejection. TLR2 gene knockout resulted in an increase in alloreactive γδT17 cells in the spleen and heart grafts of recipient mice compared with wild-type recipient mice and an increase in the mRNA expression of IL-17, IL-1ß, CCR6, and CCL20 in the heart grafts. In an in vitro experiment, a mixed lymphocyte reaction was conducted to assess the impact of TLR2 deficiency on the generation of γδT17 cells, which further substantiated a significant increase compared to that in wild-type controls. Furthermore, the mixed lymphocyte reaction showed that TLR2 regulated the production of γδT17 cells by regulating the ability of DCs to secrete IL-1ß. These results suggest that TLR2 signalling is important for regulating the generation of γδT17 cells after cardiac allograft transplantation.


Subject(s)
Heart Transplantation , Intraepithelial Lymphocytes , Toll-Like Receptor 2 , Animals , Mice , Graft Rejection , Interleukin-17/genetics , Interleukin-17/metabolism , Mice, Inbred C57BL , Mice, Knockout , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Transplantation, Homologous , Intraepithelial Lymphocytes/immunology
19.
J Fluoresc ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536610

ABSTRACT

In this work, a simple and sensitive N-acetyl-L-cysteine (NAC)-covered CdTe quantum dots (NAC-CdTe QDs) fluorescence probe for continuous detection of Co2+ and pyrophosphate ions (PPi, P2O74-) was synthesized. The fluorescence of the quantum dots was significantly quenched by Co2+ through the coordination of Co2+ and the carboxyl groups on the NAC-CdTe quantum dots. Interestingly, the combination of NAC-CdTe quantum dots with Co2+ yields a new fluorescence probe of Co2+-modified NAC-CdTe QDs (Co2+@NAC-CdTe). The addition of PPi restored the fluorescence due to the competition between PPi and carboxyl groups with Co2+ causing Co2+ to detach from the surface of Co2+@NAC-CdTe quantum dots. Thus, a sensitive and reversible detection of Co2+ and PPi had been successfully established. The Co2+@NAC-CdTe quantum dots fluorescence probe exhibits excellent selectivity and high sensitivity toward PPi detection with low detection limit of 0.28 µM. In addition, the novel fluorescence probe was successfully applied to detect the concentration of PPi in environmental water samples and in-vitro cells imaging.

20.
Se Pu ; 42(3): 225-233, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38503699

ABSTRACT

Algal toxins are secondary metabolites produced by harmful algae; these metabolites are characterized with strong toxicity, diverse structure and bioaccumulation. Aquatic organisms that feed on harmful algae can accumulate algal toxins in their bodies, and the consumption of these organisms by humans can cause symptoms of paralysis, diarrhea, and even death. The onset of poisoning can occur within as little as 30 min; in many cases, no suitable antidote for algal toxins is available. Thus, algal toxins present significant threats to human health, the aquaculture industry, and aquatic ecosystems. Because the potential risks of algal toxins are a critical issue, these toxins have become a research hotspot. The water environment and various types of aquatic products should be monitored and analyzed to ensure their safety. However, because of possible matrix effects and the low content of algal toxins in actual samples, an efficient pretreatment method is necessary prior to instrumental analyses. Efficient sample pretreatment techniques can not only reduce or eliminate interferences from the sample matrix during analysis but also enrich the target analytes to meet the detection limit of the analytical instrument, thereby ensuring the sensitivity and accuracy of the detection method. In recent years, sample pretreatment techniques such as solid-phase extraction (SPE), solid-phase microextraction (SPME), magnetic SPE (MSPE), dispersive SPE (DSPE), and pipette tip-based SPE (PT-SPE) have gained wide attention in the field of algal-toxin separation and analysis. The performance of these pretreatment techniques largely depends on the characteristics of the extraction materials. Given the diverse physicochemical properties of algal toxins, including their different molecular sizes, hydrophobicity/hydrophilicity, and charges, the design and preparation of materials suitable for algal-toxin extraction is an essential undertaking. The optimal extraction material should be capable of reversible algal-toxin adsorption and preferably possess a porous structure with a large surface area to allow for high recovery rates and good interfacial contact with the toxins. Additionally, the extraction material should exhibit good chemical stability in the sample solution and elution solvent within the working pH range; otherwise, it may dissolve or lose its functional groups. Many research efforts have sought to develop novel adsorbent materials with these properties in the separation and analysis of algal toxins, focusing on carbon-based materials, metal organic frameworks (MOFs), covalent organic frameworks (COFs), molecularly imprinted polymers (MIPs), and their functionalized counterparts. Carbon-based materials, MOFs, and COFs have advantages such as large surface areas and abundant adsorption sites. These extraction materials are widely used in the separation and analysis of target substances in complex environmental, biological, and food samples owing to their excellent performance and unique microstructure. They are also the main adsorbents used for the extraction of algal toxins. These extraction materials play an essential role in the extraction of algal toxins, but they also present a number of limitations: (1) Carbon-based materials, MOFs, and COFs have relatively poor selective-adsorption ability towards target substances; (2) Most MOFs are unstable in aqueous solutions and challenging to apply during extraction from water-based sample solutions; (3) COFs mainly consist of lightweight elements, rendering them difficult to completely separate from sample solutions using centrifugal force, which limits their application range; (4) Although MIPs have good selectivity, issues such as template-molecule loss, slow mass-transfer rates, and low adsorption capacity must be addressed. Therefore, the design and preparation of novel functionalized extraction materials specifically tailored for algal toxins and studies on new composite extraction materials are highly desirable. This article collects representative literature from domestic and international research on algal-toxin analysis over the past decade, summarizes the relevant findings, categorizes the applications of novel functional materials in algal-toxin-extraction processes, and provides an outlook on their future development prospects.


Subject(s)
Aquaculture , Ecosystem , Humans , Adsorption , Carbon , Water , Solid Phase Extraction
SELECTION OF CITATIONS
SEARCH DETAIL
...