Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(2): 105610, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159847

ABSTRACT

Many metabolic diseases are caused by disorders of lipid homeostasis. CIDEC, a lipid droplet (LD)-associated protein, plays a critical role in controlling LD fusion and lipid storage. However, regulators of CIDEC remain largely unknown. Here, we established a homogeneous time-resolved fluorescence (HTRF)-based high-throughput screening method and identified LPXN as a positive regulatory candidate for CIDEC. LPXN and Hic-5, the members of the Paxillin family, are focal adhesion adaptor proteins that contribute to the recruitment of specific kinases and phosphatases, cofactors, and structural proteins, participating in the transduction of extracellular signals into intracellular responses. Our data showed that Hic-5 and LPXN significantly increased the protein level of CIDEC and enhanced CIDEC stability not through triacylglycerol synthesis and FAK signaling pathways. Hic-5 and LPXN reduced the ubiquitination of CIDEC and inhibited its proteasome degradation pathway. Furthermore, Hic-5 and LPXN enlarged LDs and promoted lipid storage in adipocytes. Therefore, we identified Hic-5 and LPXN as novel regulators of CIDEC. Our current findings also suggest intervention with Hic-5 and LPXN might ameliorate ectopic fat storage by enhancing the lipid storage capacity of white adipose tissues.


Subject(s)
Adipocytes , Apoptosis Regulatory Proteins , Cell Adhesion Molecules , LIM Domain Proteins , Adipocytes/metabolism , Lipid Droplets/metabolism , Ubiquitination , HEK293 Cells , HeLa Cells , Humans , LIM Domain Proteins/metabolism , Cell Adhesion Molecules/metabolism , Apoptosis Regulatory Proteins/metabolism
2.
Langmuir ; 39(21): 7396-7407, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37186955

ABSTRACT

Surface textures have a significant influence on surface-functional properties, which provide an alternative solution to create an accurate control of microfluidics flow. This paper studies the modulation ability of fish-scale surface textures on microfluidics flowing behavior on the ground of the early research on vibration machining-induced surface wettability variation. A microfluidic directional flow function is proposed by modifying the wall of the microchannel at the T-junction with different surface textures. The retention force caused by the surface tension difference between the two outlets in the T-junction is studied. In order to investigate the influence of fish-scale textures on the performance of the directional flowing valve and micromixer, T-shaped and Y-shaped microfluidic chips were fabricated. The experimental results indicated that with the aid of the fish-scale surface textures generated by vibration-assisted micromilling, directional liquid flow can be achieved at a specific input pressure range and the mixing efficiency of microfluidics can be improved dramatically.

3.
J Sci Food Agric ; 103(10): 5004-5018, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36987580

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by pruritus and eczema lesions and psychiatric comorbidities. The gut-brain-skin axis plays a pivotal role during AD development, which might suggest a novel therapeutic strategy for AD. The present study aims to uncover the protective effects and underlying mechanisms of fructo-oligofructose (FOS), a type of prebiotic, on AD-like skin manifestations and comorbid anxiety and depression in AD mice. RESULTS: Female Kunming mice were treated topically with 2,4-dinitrofluorobenzene (DNFB) to induce AD-like symptoms and FOS was administered daily for 14 days. The results showed that FOS could alleviate AD-like skin lesions markedly as evidenced by dramatic decreases in severity score, scratching bouts, the levels of immunoglobulin E (IgE) and T helper 1(Th1)/Th2-related cytokines, and the infiltration of inflammatory cells and mast cells to the dermal tissues. The comorbid anxiety and depressive-like behaviors, estimated by the forced swimming test (FST), the tail-suspension test (TST), the open-field test (OFT), and the zero maze test (ZMT) in AD mice, were significantly attenuated by FOS. Fructo-oligofructose significantly upregulated brain neurotransmitters levels of 5-hydroxytryptamine (5-HT) and dopamine (DA). Furthermore, FOS treatment increased the relative abundance of gut microbiota, such as Prevotella and Lactobacillus and the concentrations of short-chain fatty acids (SCFAs), especially acetate and iso-butyrate in the feces of AD mice. The correlation analysis indicated that the reshaped gut microbiome composition and enhanced SCFAs formation are associated with skin inflammation and behavioral alteration. CONCLUSION: Collectively, these data identify FOS as a promising microbiota-targeted treatment for AD-like skin inflammation and comorbid anxiety and depressive-like behaviors. © 2023 Society of Chemical Industry.


Subject(s)
Dermatitis, Atopic , Mice , Female , Animals , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dinitrofluorobenzene/adverse effects , Skin , Cytokines , Inflammation/drug therapy
4.
Gland Surg ; 12(2): 252-262, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36915808

ABSTRACT

Background: The aim of this study was to investigate the expression of insulin receptor (IR) in the blood vessels of patients with breast cancer (BC) with or without type 2 diabetes mellitus (DM2) and its relationship with histopathological features of BC tissues and patient prognosis. Methods: A total of 124 patients with BC diagnosed and treated at The Affiliated Hospital of Putian University between January 2018 and January 2019 were eligible for this study. According to the presence or absence of DM2, they were then divided into 2 groups: patients with BC and DM2 (DBC group, n=26) and patients with BC and without DM2 (BC group, n=98). The expression of IR in the cancer and adjacent tissues was detected using immunohistochemistry. The patients were followed up for 1 year. Kaplan-Meier analysis was used to compute the overall survival (OS) of the patients with BC. Furthermore, Cox regression was employed to investigate the correlation of IR expression with DM2, pathological tissue, TNM stage, and OS. Results: IR expression in cancer tissues (34.7%) was significantly higher than that in adjacent normal tissues (15.3%). Among cancer tissues, IR was highly expressed in DBC tissues (57.7%) compared with BC tissues (28.6%). IR was also highly expressed in patients with tumor infiltration and lymphatic metastasis. Its expression was significantly correlated with T stage and N stage, but not with M stage. In addition, patients with high IR expression had significantly lower survival than did those with low IR expression. Moreover, univariate and multivariate Cox regression analysis indicated that tumor infiltration, lymphatic metastasis, tumor size, T stage, and high IR expression were independent risk factors for BC prognosis. Conclusions: High IR expression was associated with poor prognosis of patients with BC. The expression of IR may be a promising indicator to assess the survival of patients with BC.

5.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498879

ABSTRACT

Amino acid decarboxylases convert amino acids into different biogenic amines which regulate diverse biological processes. Therefore, identifying the substrates of amino acid decarboxylases is critical for investigating the function of the decarboxylases, especially for the new genes predicted to be amino acid decarboxylases. In the present work, we have established a simple and efficient method to identify the substrates and enzymatic activity of amino acid decarboxylases based on LC-MS methods. We chose GAD65 and AADC as models to validate our method. GAD65 and AADC were expressed in HEK 293T cells and purified through immunoprecipitation. The purified amino acid decarboxylases were subjected to enzymatic reaction with different substrate mixtures in vitro. LC-MS analysis of the reaction mixture identified depleted or accumulated metabolites, which corresponded to candidate enzyme substrates and products, respectively. Our method successfully identified the substrates and products of known amino acid decarboxylases. In summary, our method can efficiently identify the substrates and products of amino acid decarboxylases, which will facilitate future amino acid decarboxylase studies.


Subject(s)
Amino Acids , Aromatic-L-Amino-Acid Decarboxylases , Aromatic-L-Amino-Acid Decarboxylases/genetics
6.
J Med Chem ; 65(19): 12802-12824, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36153998

ABSTRACT

Ligand-targeting drug delivery systems have made significant strides for disease treatments with numerous clinical approvals in this era of precision medicine. Herein, we report a class of small molecule-based immune checkpoint-targeting maytansinoid conjugates. From the ligand targeting ability, pharmacokinetics profiling, in vivo anti-pancreatic cancer, triple-negative breast cancer, and sorafenib-resistant liver cancer efficacies with quantitative mRNA analysis of treated-tumor tissues, we demonstrated that conjugate 40a not only induced lasting regression of tumor growth, but it also rejuvenated the once immunosuppressive tumor microenvironment to an "inflamed hot tumor" with significant elevation of gene expressions that were not accessible in the vehicle-treated tumor. In turn, the immune checkpoint-targeting small molecule drug conjugate from this work represents a new pharmacodelivery strategy that can be expanded with combination therapy with existing immune-oncology treatment options.


Subject(s)
Phosphatidylserines , Triple Negative Breast Neoplasms , Humans , Ligands , RNA, Messenger , Sorafenib/pharmacology , Sorafenib/therapeutic use , Tumor Microenvironment
7.
Pharmaceutics ; 14(7)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35890212

ABSTRACT

Ligand-targeting drug conjugates are a class of clinically validated biopharmaceutical drugs constructed by conjugating cytotoxic drugs with specific disease antigen targeting ligands through appropriate linkers. The integrated linker-drug motif embedded within such a system can prevent the premature release during systemic circulation, thereby allowing the targeting ligand to engage with the disease antigen and selective accumulation. We have designed and synthesized new thioester-linked maytansinoid conjugates. By performing in vitro cytotoxicity, targeting ligand binding assay, and in vivo pharmacokinetic studies, we investigated the utility of this new linker-drug moiety in the small molecule drug conjugate (SMDC) system. In particular, we conjugated the thioester-linked maytansinoids to the phosphatidylserine-targeting small molecule zinc dipicolylamine and showed that Zn8_DM1 induced tumor regression in the HCC1806 triple-negative breast cancer xenograft model. Moreover, in a spontaneous sorafenib-resistant liver cancer model, Zn8_DM1 exhibited potent antitumor growth efficacy. From quantitative mRNA analysis of Zn8_DM1 treated-tumor tissues, we observed the elevation of gene expressions associated with a "hot inflamed tumor" state. With the identification and validation of a plethora of cancer-associated antigens in the "omics" era, this work provided the insight that antibody- or small molecule-based targeting ligands can be conjugated similarly to generate new ligand-targeting drug conjugates.

8.
Redox Biol ; 46: 102126, 2021 10.
Article in English | MEDLINE | ID: mdl-34509914

ABSTRACT

Nitro-fatty acids are a class of endogenous electrophilic lipid mediators with anti-inflammatory and cytoprotective effects in a wide range of inflammatory and fibrotic disease models. While these beneficial biological effects of nitro-fatty acids are mainly attributed to their ability to form covalent adducts with proteins, only a small number of proteins are known to be nitro-alkylated and the scope of protein nitro-alkylation remains undetermined. Here we describe the synthesis and application of a clickable nitro-fatty acid probe for the detection and first global identification of mammalian proteins that are susceptible to nitro-alkylation. 184 high confidence nitro-alkylated proteins were identified in THP1 macrophages, majority of which are novel targets of nitro-fatty acids, including extended synaptotagmin 2 (ESYT2), signal transducer and activator of transcription 3 (STAT3), toll-like receptor 2 (TLR2), retinoid X receptor alpha (RXRα) and glucocorticoid receptor (NR3C1). In particular, we showed that 9-nitro-oleate covalently modified and inhibited dexamethasone binding to NR3C1. Bioinformatic analyses revealed that nitro-alkylated proteins are highly enriched in endoplasmic reticulum and transmembrane proteins, and are overrepresented in lipid metabolism and transport pathways. This study significantly expands the scope of protein substrates targeted by nitro-fatty acids in living cells and provides a useful resource towards understanding the pleiotropic biological roles of nitro-fatty acids as signaling molecules or as multi-target therapeutic agents.


Subject(s)
Fatty Acids , Nitro Compounds , Alkylation , Animals , Protein Binding , Signal Transduction
9.
J Med Chem ; 62(13): 6047-6062, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31181158

ABSTRACT

We report that compound 13, a novel phosphatidylserine-targeting zinc(II) dipicolylamine drug conjugate, readily triggers a positive feedback therapeutic loop through the in situ generation of phosphatidylserine in the tumor microenvironment. Linker modifications, pharmacokinetics profiling, in vivo antitumor studies, and micro-Western array of treated-tumor tissues were employed to show that this class of conjugates induced regeneration of apoptotic signals, which facilitated subsequent recruitment of the circulating conjugates through the zinc(II) dipicolylamine-phosphatidylserine association and resulted in compounding antitumor efficacy. Compared to the marketed compound 17, compound 13 not only induced regressions in colorectal and pancreatic tumor models, it also exhibited at least 5-fold enhancement in antitumor efficacy with only 40% of the drug employed during treatment, culminating in a >12.5-fold increase in therapeutic potential. Our study discloses a chemically distinct apoptosis-targeting theranostic, with built-in complementary functional moieties between the targeting module and the drug mechanism to expand the arsenal of antitumor therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Coordination Complexes/therapeutic use , Indolizines/therapeutic use , Neoplasms/drug therapy , Phosphatidylserines/metabolism , Picolines/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Drug Design , Humans , Indolizines/chemical synthesis , Indolizines/chemistry , Male , Mice, Inbred ICR , Mice, Nude , Molecular Structure , Picolines/chemical synthesis , Picolines/chemistry , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/therapeutic use , Xenograft Model Antitumor Assays , Zinc/chemistry
10.
Sci Rep ; 7(1): 12336, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28951584

ABSTRACT

Influenza is an annual seasonal epidemic that has continually drawn public attentions, due to the potential death toll and drug resistance. Neuraminidase, which is essential for the spread of influenza virus, has been regarded as a valid target for the treatment of influenza infection. Although neuraminidase drugs have been developed, they are susceptible to drug-resistant mutations in the sialic-binding site. In this study, we established computational models (site-moiety maps) of H1N1 and H5N1 to determine properties of the 150-cavity, which is adjacent to the drug-binding site. The models reveal that hydrogen-bonding interactions with residues R118, D151, and R156 and van der Waals interactions with residues Q136, D151, and T439 are important for identifying 150-cavitiy inhibitors. Based on the models, we discovered three new inhibitors with IC50 values <10 µM that occupies both the 150-cavity and sialic sites. The experimental results identified inhibitors with similar activities against both wild-type and dual H274Y/I222R mutant neuraminidases and showed little cytotoxic effects. Furthermore, we identified three new inhibitors situated at the sialic-binding site with inhibitory effects for normal neuraminidase, but lowered effects for mutant strains. The results suggest that the new inhibitors can be used as a starting point to combat drug-resistant strains.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery/methods , Influenza, Human/drug therapy , Molecular Dynamics Simulation , Neuraminidase/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Antiviral Agents/therapeutic use , Binding Sites/genetics , Computer Simulation , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/metabolism , Influenza, Human/virology , Inhibitory Concentration 50 , Mutation , Neuraminidase/chemistry , Neuraminidase/genetics , Protein Structure, Tertiary , Viral Proteins/chemistry , Viral Proteins/genetics
11.
Bioconjug Chem ; 28(7): 1878-1892, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28581724

ABSTRACT

A series of zinc(II) dipicolylamine (ZnDPA)-based drug conjugates have been synthesized to probe the potential of phosphatidylserine (PS) as a new antigen for small molecule drug conjugate (SMDC) development. Using in vitro cytotoxicity and plasma stability studies, PS-binding assay, in vivo pharmacokinetic studies, and maximum tolerated dose profiles, we provided a roadmap and the key parameters required for the development of the ZnDPA based drug conjugate. In particular, conjugate 24 induced tumor regression in the COLO 205 xenograft model and exhibited a more potent antitumor effect with a 70% reduction of cytotoxic payload compared to that of the marketed irinotecan when dosed at the same regimen. In addition to the validation of PS as an effective pharmacodelivery target for SMDC, our work also provided the foundation that, if applicable, a variety of therapeutic agents could be conjugated in the same manner to treat other PS-associated diseases.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Immunoconjugates/therapeutic use , Molecular Targeted Therapy/methods , Organometallic Compounds/immunology , Phosphatidylserines/immunology , Picolinic Acids/immunology , Animals , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Organometallic Compounds/chemical synthesis , Organometallic Compounds/pharmacology , Phosphatidylserines/metabolism , Picolinic Acids/chemical synthesis , Picolinic Acids/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
12.
ACS Appl Mater Interfaces ; 7(22): 11842-8, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-25989321

ABSTRACT

The further development of electrode materials with high capacity and excellent rate capability presents a great challenge for advanced lithium-ion batteries. Herein, we demonstrate a battery-capacitive synchronous lithium storage mechanism based on a scrupulous design of TiC/NiO core/shell nanoarchitecture, in which the TiC nanowire core exhibits a typical double-layer capacitive behavior, and the NiO nanosheet shell acts as active materials for Li(+) storage. The as-constructed TiC/NiO (32 wt % NiO) core/shell nanoarchitecture offers high overall capacity and excellent cycling ability, retaining above 507.5 mAh g(-1) throughout 60 cycles at a current density of 200 mA g(-1) (much higher than theoretical value of the TiC/NiO composite). Most importantly, the high rate capability is far superior to that of NiO or other metal oxide electrode materials, owing to its double-layer capacitive characteristics of TiC nanowire and intrinsic high electrical conductivity for facile electron transport during Li(+) storage process. Our work offers a promising approach via a rational hybridization of two electrochemical energy storage materials for harvesting high capacity and good rate performance.

13.
PLoS One ; 9(11): e111331, 2014.
Article in English | MEDLINE | ID: mdl-25412347

ABSTRACT

Enterovirus 71 (EV-A71) is a neurotropic virus that can cause severe complications involving the central nervous system. No effective antiviral therapeutics are available for treating EV-A71 infection and drug discovery efforts are rarely focused to target this disease. Thus, the main goal of this study was to discover existing drugs with novel indications that may effectively inhibit EV-A71 replication and the inflammatory cytokines elevation. In this study, we showed that LiCl, a GSK3ß inhibitor, effectively suppressed EV-A71 replication, apoptosis and inflammatory cytokines production (Interleukin 6, Interleukin-1ß) in infected cells. Furthermore, LiCl and an immunomodular agent were shown to strongly synergize with each other in suppressing EV-A71 replication. The results highlighted potential new treatment regimens in suppressing sequelae caused by EV-A71 replication.


Subject(s)
Aniline Compounds/administration & dosage , Antiviral Agents/administration & dosage , Enterovirus A, Human/drug effects , Enterovirus Infections/drug therapy , Hydroxybutyrates/administration & dosage , Lithium Chloride/administration & dosage , Aniline Compounds/pharmacology , Animals , Antiviral Agents/pharmacology , Apoptosis/drug effects , Cell Line , Chlorocebus aethiops , Crotonates , Cytokines/genetics , Cytokines/metabolism , Drug Repositioning , Drug Synergism , Drug Therapy, Combination , Enterovirus A, Human/physiology , Enterovirus Infections/immunology , Humans , Hydroxybutyrates/pharmacology , Lithium Chloride/pharmacology , Nitriles , Toluidines , Vero Cells , Virus Replication/drug effects
15.
PLoS One ; 8(2): e56704, 2013.
Article in English | MEDLINE | ID: mdl-23437217

ABSTRACT

Infection with influenza virus is a major public health problem, causing serious illness and death each year. Emergence of drug-resistant influenza virus strains limits the effectiveness of drug treatment. Importantly, a dual H275Y/I223R mutation detected in the pandemic influenza A 2009 virus strain results in multidrug resistance to current neuraminidase (NA) drugs. Therefore, discovery of new agents for treating multiple drug-resistant (MDR) influenza virus infections is important. Here, we propose a parallel screening strategy that simultaneously screens wild-type (WT) and MDR NAs, and identifies inhibitors matching the subsite characteristics of both NA-binding sites. These may maintain their potency when drug-resistant mutations arise. Initially, we analyzed the subsite of the dual H275Y/I223R NA mutant. Analysis of the site-moiety maps of NA protein structures show that the mutant subsite has a relatively small volume and is highly polar compared with the WT subsite. Moreover, the mutant subsite has a high preference for forming hydrogen-bonding interactions with polar moieties. These changes may drive multidrug resistance. Using this strategy, we identified a new inhibitor, Remazol Brilliant Blue R (RB19, an anthraquinone dye), which inhibited WT NA and MDR NA with IC(50) values of 3.4 and 4.5 µM, respectively. RB19 comprises a rigid core scaffold and a flexible chain with a large polar moiety. The former interacts with highly conserved residues, decreasing the probability of resistance. The latter forms van der Waals contacts with the WT subsite and yields hydrogen bonds with the mutant subsite by switching the orientation of its flexible side chain. Both scaffolds of RB19 are good starting points for lead optimization. The results reveal a parallel screening strategy for identifying resistance mechanisms and discovering anti-resistance neuraminidase inhibitors. We believe that this strategy may be applied to other diseases with high mutation rates, such as cancer and human immunodeficiency virus type 1.


Subject(s)
Drug Resistance, Viral/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/drug therapy , Influenza, Human/genetics , Neuraminidase/antagonists & inhibitors , Anthraquinones/administration & dosage , Anthraquinones/chemistry , Antiviral Agents , Drug Resistance, Multiple/genetics , Genotype , Humans , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza, Human/virology , Mutation , Neuraminidase/genetics , Neuraminidase/metabolism , Pandemics
16.
ChemMedChem ; 7(9): 1546-50, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22821876

ABSTRACT

From a high-throughput screening (HTS) hit with inhibitory activity against virus-induced cytophathic in the low micromolar range, we have developed a potent anti-influenza lead through careful optimization without compromising the drug-like properties of the compound. An orally bioavailable compound was identified as a lead agent with nanomolar activity against influenza, representing a 140-fold improvement over the initial hit.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Quinolines/chemistry , Quinolines/pharmacology , Animals , Antiviral Agents/pharmacokinetics , Cell Line , Drug Discovery , Humans , Influenza, Human/drug therapy , Male , Orthomyxoviridae Infections/drug therapy , Quinolines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
17.
Anal Chem ; 84(15): 6391-9, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22712523

ABSTRACT

Recent studies have shown that NP (nucleoprotein), which possesses multiple functions in the viral life cycle, is a new potential anti-influenza drug target. NP inhibitors reliably induce conformational changes in NPs, and these changes may confer inhibition of the influenza virus. The six conserved tryptophan residues in NP can be used as an intrinsic probe to monitor the change in fluorescence of the tryptophan residues in the protein upon binding to an NP inhibitor. In the present study, we found that the fluorescence of recombinant NP proteins was quenched following the binding of available NP inhibitors (such as nucleozin) in a concentration- and time-dependent manner, which suggests that the inhibitor induced conformational changes in the NPs. The minimal fluorescence-quenching effect and weak binding constant of nucleozin to the swine-origin influenza virus H1N1pdm09 (SOIV) NP revealed that the SOIV is resistant to nucleozin. We have used the fluorescence-quenching property of tryptophans in NPs that were bound to ligands in a 96-well-plate-based drug screen to assess the ability of promising small molecules to interact with NPs and have identified one new anti-influenza drug, CSV0C001018, with a high SI value. This convenient method for drug screening may facilitate the development of antiviral drugs that target viruses other than the influenza virus, such as HIV and HBV.


Subject(s)
Influenza A Virus, H1N1 Subtype/metabolism , Nucleoproteins/antagonists & inhibitors , Spectrometry, Fluorescence , Tryptophan/chemistry , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Dogs , Drug Evaluation, Preclinical , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Madin Darby Canine Kidney Cells , Molecular Sequence Data , Nucleoproteins/genetics , Nucleoproteins/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Swine
18.
Anticancer Res ; 32(1): 147-51, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22213300

ABSTRACT

A high-throughput 32D(L858R/T790M) cell-based assay to identify inhibitors of the L858R/T790M mutant epidermal growth factor receptor (EGFR) pathway was established. After screening, ten hits from among 60,000 compounds in our in-house compound library were initially identified. In the secondary assays, one hit, 1-[2-(decyloxy)-2-oxoethyl]-3-methyl-2-[(4-methylphenoxy) methyl]-1H-benzimidazol-3-ium, was confirmed to directly inhibit the kinase activity of recombinant L858R/T790M EGFR and the phosphorylation of EGFR-L858R/T790M in gefitinib-resistant H1975 cells. Thus, this high-throughput assay system may be useful for identifying novel inhibitors which suppress mutant EGFR-T790M signalling and for overcoming T790M-mediated acquired resistance for future anticancer drug discovery.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Epidermal Growth Factor/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Mutation/drug effects , Quinazolines/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gefitinib , High-Throughput Screening Assays , Humans , Lung Neoplasms/genetics , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects
19.
Antimicrob Agents Chemother ; 56(2): 647-57, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21930871

ABSTRACT

The aim of this study was to identify the antiviral mechanism of a novel compound, BPR3P0128. From a large-scale screening of a library of small compounds, BPR3P compounds were found to be potent inhibitors of influenza viral replication in Madin-Darby canine kidney (MDCK) cells. BPR3P0128 exhibited inhibitory activity against both influenza A and B viruses. The 50% inhibitory concentrations were in the range of 51 to 190 nM in MDCK cells, as measured by inhibition-of-cytopathic-effect assays. BPR3P0128 appeared to target the viral replication cycle but had no effect on viral adsorption. The inhibition of cap-dependent mRNA transcription by BPR3P0128 was more prominent with a concurrent increase in cap-independent cRNA replication in a primer extension assay, suggesting a role of BPR3P0128 in switching transcription to replication. This reduction in mRNA expression resulted from the BPR3P-mediated inhibition of the cap-dependent endoribonuclease (cap-snatching) activities of nuclear extracts containing the influenza virus polymerase complex. No inhibition of binding of 5' viral RNA to the viral polymerase complex by this compound was detected. BPR3P0128 also effectively inhibited other RNA viruses, such as enterovirus 71 and human rhinovirus, but not DNA viruses, suggesting that BPR3P0128 targets a cellular factor(s) associated with viral PB2 cap-snatching activity. The identification of this factor(s) could help redefine the regulation of viral transcription and replication and thereby provide a potential target for antiviral chemotherapeutics.


Subject(s)
Antiviral Agents/pharmacology , Endonucleases/antagonists & inhibitors , Orthomyxoviridae/drug effects , Pyrazoles/pharmacology , RNA Caps/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Cytopathogenic Effect, Viral/drug effects , Dogs , Endonucleases/metabolism , HEK293 Cells , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/metabolism , Influenza B virus/drug effects , Influenza B virus/metabolism , Orthomyxoviridae/metabolism , Orthomyxoviridae/physiology , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Quinolines/chemical synthesis , Quinolines/chemistry , Quinolines/pharmacology , RNA Caps/metabolism , RNA, Viral/biosynthesis , Transcription, Genetic/drug effects , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , Virus Replication/drug effects
20.
J Med Chem ; 53(20): 7316-26, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-20961149

ABSTRACT

HTS hit 7 was modified through hybrid design strategy to introduce a chiral side chain followed by introduction of Michael acceptor group to obtain potent EGFR kinase inhibitors 11 and 19. Both 11 and 19 showed over 3 orders of magnitude enhanced HCC827 antiproliferative activity compared to HTS hit 7 and also inhibited gefitinib-resistant double mutant (DM, T790M/L858R) EGFR kinase at nanomolar concentration. Moreover, treatment with 19 shrinked tumor in nude mice xenograft model.


Subject(s)
Antineoplastic Agents/chemical synthesis , ErbB Receptors/antagonists & inhibitors , Heterocyclic Compounds, 3-Ring/chemical synthesis , Pyrimidines/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung , Cell Line, Tumor , Drug Design , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , ErbB Receptors/genetics , Gefitinib , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Male , Mice , Mice, Nude , Mutation , Neoplasm Transplantation , Pyrimidines/chemistry , Pyrimidines/pharmacology , Quinazolines/pharmacology , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...