Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891409

ABSTRACT

The importance of bacteria detection lies in its role in enabling early intervention, disease prevention, environmental protection, and effective treatment strategies. Advancements in technology continually enhance the speed, accuracy, and sensitivity of detection methods, aiding in addressing these critical issues. This study first reports the fabrication of an inverter constructed using crosslinked-poly(4-vinylphenol) (C-PVP) as the dielectric layer and an organic complementary metal-oxide semiconductor (O-CMOS) based on pentacene and N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13) as a diagnostic biosensor to rapidly detect bacterial concentration. Bacteria including Escherichia coli O157, Staphylococcus aureus ATCC25922, and Enterococcus faecalis SH-1051210 were analysed on the inverters at an ultra-low operating voltage of 2 V. The high density of negative charge on bacteria surfaces strongly modulates the accumulated negative carriers within the inverter channel, resulting in a shift of the switching voltage. The inverter-based bacteria sensor exhibits a linear-like response to bacteria concentrations ranging from 102 to 108 CFU/mL, with a sensitivity above 60%. Compared to other bacterial detectors, the advantage of using an inverter lies in its ability to directly read the switching voltage without requiring an external computing device. This facilitates rapid and accurate bacterial concentration measurement, offering significant ease of use and potential for mass production.

2.
Polymers (Basel) ; 15(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37299220

ABSTRACT

In this study, a high-K material, aluminum oxide (AlOx), as the dielectric of organic field-effect transistors (OFETs) was used to reduce the threshold and operating voltages, while focusing on achieving high-electrical-stability OFETs and retention in OFET-based memory devices. To achieve this, we modified the gate dielectric of OFETs using polyimide (PI) with different solid contents to tune the properties and reduce the trap state density of the gate dielectric, leading to controllable stability in the N, N'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13)-based OFETs. Thus, gate field-induced stress can be compensated for by the carriers accumulated due to the dipole field created by electric dipoles within the PI layer, thereby improving the OFET's performance and stability. Moreover, if the OFET is modified by PI with different solid contents, it can operate more stably under fixed gate bias stress over time than the device with AlOx as the dielectric layer only can. Furthermore, the OFET-based memory devices with PI film showed good memory retention and durability. In summary, we successfully fabricated a low-voltage operating and stable OFET and an organic memory device in which the memory window has potential for industrial production.

SELECTION OF CITATIONS
SEARCH DETAIL
...