Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Med ; 78(3): 677-692, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38403724

ABSTRACT

Betulinic acid (BA), a naturally occurring lupane-type triterpenoid, possesses a wide range of potential activities against different types of cancer. However, the molecular mechanisms involved in anti-cervical cancer about BA were rarely investigated. Herein, the role of BA in cervical cancer suppression by ROS-mediated endoplasmic reticulum stress (ERS) and autophagy was deeply discussed. The findings revealed that BA activated Keap1/Nrf2 pathway and triggered mitochondria-dependent apoptosis due to ROS production. Furthermore, BA increased the intracellular Ca2+ levels, inhibited the expression of Beclin1 and promoted the expression of GRP78, LC3-II, and p62 associated with ERS and autophagy. Besides, BA initiated the formation of autophagosomes and inhibited autophagic flux by the co-administration of BA with 3-methyladenine (3-MA) and chloroquine (CQ), respectively. The in vivo experiment manifested that hydroxychloroquine (HCQ) enhanced the apoptosis induced by BA. For the first time, we demonstrated that BA could initiate early autophagy, inhibit autophagy flux, and induce protective autophagy in HeLa cells. Thus, BA could be a potential chemotherapy drug for cervical cancer, and inhibition of autophagy could enhance the anti-tumor effect of BA. However, the interactions of signaling factors between ERS-mediated and autophagy-mediated apoptosis deserve further attention.


Subject(s)
Apoptosis , Autophagy , Betulinic Acid , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Pentacyclic Triterpenes , Reactive Oxygen Species , Triterpenes , Uterine Cervical Neoplasms , Humans , Pentacyclic Triterpenes/pharmacology , Autophagy/drug effects , HeLa Cells , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Female , Triterpenes/pharmacology , Triterpenes/chemistry , Animals , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , NF-E2-Related Factor 2/metabolism , Mice , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...