Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 890: 173630, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33045197

ABSTRACT

Glucocorticoids are commonly used in clinic, but the immunosuppression seriously hinders their usage. Herein, immunomodulatory effect of artesunate (AS) on hydrocortisone (HC)-induced immunosuppression was investigated. HC-induced immunosuppression mice (HC mice) were established by intramuscular administration with HC (20 mg/kg) once a day for 5 consecutive days. The results showed HC mice challenged with Escherichia coli on the sixth day presented a lower ability to clear bacteria, decreased TNF-α in blood, decreased spleen index and thymus index. Significantly, AS (20 mg/kg) treatment not only enhanced the ability of HC mice to clear bacteria, but also increased spleen index, the levels of pro-inflammatory cytokines from 78.7 ± 12.1 ng/ml (TNF-α) and 48.7 ± 8.6 pg/ml (IL-6) to 174.0 ± 90.5 ng/ml and 783.3 ± 90.5 pg/ml, number of white blood cells in blood, and sIgA in colon. Subsequently, HC-induced immunosuppression peritoneal macrophages model (HC cells) was established via addition of HC (0.5 µg/ml) for 0.5 h, and then LPS (100 ng/ml) was added to clarify the functional status of the cells. The results showed HC inhibited TNF-α and IL-6 mRNA expressions and their release, but AS (2.5 µg/ml) could increase TNF-α and IL-6 mRNA expressions and their release. AS inhibited GILZ mRNA up-regulated by HC and increases TLR4/NF-κB p65 expressions down-regulated by HC. Our findings revealed that AS's effect is closely related to the improvement of the TLR4/NF-κB signal transduction pathway via inhibiting the up-regulation of GILZ mRNA, demonstrating AS does possess immunomodulatory effects and is worth further investigation in the future.


Subject(s)
Artesunate/pharmacology , Bacteria/immunology , Cytokines/metabolism , Immunologic Factors/pharmacology , Animals , Artesunate/therapeutic use , Bacterial Load/drug effects , Cells, Cultured , Cytokines/drug effects , Disease Models, Animal , Glucocorticoids/toxicity , Immunoglobulin A, Secretory/metabolism , Immunologic Factors/therapeutic use , Immunosuppression Therapy , Interleukin-6/metabolism , Leukocytes/drug effects , Macrophages, Peritoneal/metabolism , Male , Mice, Inbred BALB C , Spleen/drug effects , Spleen/pathology , Thymus Gland/drug effects , Thymus Gland/pathology , Toll-Like Receptor 4/metabolism , Transcription Factor RelA/metabolism , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/blood
2.
Technol Cancer Res Treat ; 19: 1533033820920967, 2020.
Article in English | MEDLINE | ID: mdl-32356485

ABSTRACT

BACKGROUND: In recent studies, microRNAs have been demonstrated as stable detectable biomarkers in blood for cancer. In addition, computer-aided biomarker discovery has now become an attractive paradigm for precision diagnosis. METHODS: In this study, we identified and evaluated miR-139-3p as a biomarker for screening of esophageal squamous cell carcinoma using the Cancer Genome Atlas and Gene Expression Omnibus database analyses. We identified possible miR-139-3p target genes through the predicted database and esophageal squamous cell carcinoma upregulated genes from the Cancer Genome Atlas and Gene. Bioinformatics analysis was performed to determine key miR-139-3p targets and pathways associated with esophageal carcinoma. Finally, the expression and expected significance of hub genes were evaluated via the Genotype-Tissue Expression project. RESULTS: MiR-139-3p was significantly downregulated in patients with esophageal squamous cell carcinoma/esophageal carcinoma. In GSE 122497, the area under the curve-receiver operating characteristic value, sensitivity, and specificity for serum miR-139-3p were 0.754, 67.49%, and 80.00%, respectively. The pattern specification process, skeletal system development, and regionalization process were the most enriched interactions in esophageal carcinoma. In addition, Epstein-Barr virus infection, human T-cell leukemia virus 1 infection, and human cytomegalovirus infection were identified as crucial pathways. Six hub genes (CD1A, FCGR2A, ANPEP, CD1B, membrane metalloendopeptidase, and TWIST1) were found, and FCGR2A and membrane metalloendopeptidase were further confirmed by genotype-tissue expression. High expression of membrane metalloendopeptidase correlated with a better overall survival but not with disease-free survival of patients with esophageal carcinoma. CONCLUSIONS: MiR-139-3p was identified as a candidate biomarker for predicting esophageal squamous cell carcinoma based on network analysis. MiR-139-3p acted as a tumor suppressor by targeting membrane metalloendopeptidase in esophageal carcinoma, and low expression of membrane metalloendopeptidase may indicate a better prognosis of patients with esophageal carcinoma.


Subject(s)
Esophageal Neoplasms/blood , Esophageal Squamous Cell Carcinoma/blood , MicroRNAs/blood , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Computational Biology/methods , Databases, Genetic , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Profiling/methods , Gene Regulatory Networks , Humans , MicroRNAs/genetics , Prognosis , Protein Interaction Maps , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...