Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 30(21): 215201, 2019 May 24.
Article in English | MEDLINE | ID: mdl-30721888

ABSTRACT

We report the demonstration of a steep-slope field-effect transistor with AlGaN/GaN MIS-HEMTs employing SiO2-based threshold switching devices in series with the source. The SiO2-based threshold switching devices exhibited steep slope when changing resistance states. The integrated steep-slope transistor showed a low subthreshold swing of sub-5 mV/dec with a transition range of over 105 in the transfer characteristics in both sweep directions at room temperature, as well as the low leakage current (10-5 µA µm-1) and a high I ON/I OFF ratio (>107). Moreover, with the SiO2-based threshold switching devices we also observed a positive shift of threshold voltages of the integrated device. Results from more than 50 transfer characteristics measurements also indicate the good repeatability and practicability of such a steep-switching device, where the average steep slopes are below 10 mV/decade. This steep-slope transistor with oxide-based threshold switching devices can be further extended to various transistor platforms like Si and III-V and are of potential interest for the development of power switching and high frequency devices.

2.
Nanotechnology ; 27(25): 255202, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27171505

ABSTRACT

In this work, the resistance plasticity of Cu/SiO2/W programmable metallization cell devices is experimentally explored for the emulation of biological synapses. PMC devices were fabricated with foundry friendly materials using standard processes. The resistance can be continuously increased or decreased with both dc and voltage pulse programming. Impedance spectroscopy results indicate that the gradual change of resistance is attributable to the expansion or contraction of a Cu-rich layer within the device. Pulse programming experiments further show that the pulse amplitude plays a more important role in resistance change than pulse width, which is consistent with the proposed 'dual-layer' device model. The dense resistance-state distribution, 1 V operating voltage and inherent CMOS-compatibility suggests its potential application as electronic synapse in neuromorphic computing.

3.
Nanoscale Res Lett ; 8(1): 92, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23421424

ABSTRACT

We demonstrated a flexible resistive random access memory device through a low-temperature atomic layer deposition process. The device is composed of an HfO2/Al2O3-based functional stack on an indium tin oxide-coated polyethylene terephthalate substrate. After the initial reset operation, the device exhibits a typical bipolar, reliable, and reproducible resistive switching behavior. After a 104-s retention time, the memory window of the device is still in accordance with excellent thermal stability, and a 10-year usage is still possible with the resistance ratio larger than 10 at room temperature and at 85°C. In addition, the operation speed of the device was estimated to be 500 ns for the reset operation and 800 ns for the set operation, which is fast enough for the usage of the memories in flexible circuits. Considering the excellent performance of the device fabricated by low-temperature atomic layer deposition, the process may promote the potential applications of oxide-based resistive random access memory in flexible integrated circuits.

SELECTION OF CITATIONS
SEARCH DETAIL
...