Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Food Res Int ; 184: 114274, 2024 May.
Article in English | MEDLINE | ID: mdl-38609251

ABSTRACT

Thermal processing with salt ions is widely used for the production of food products (such as whole grain food) containing protein and anthocyanin. To date, it is largely unexplored how salt ion presence during thermal processing regulates the practical performance of protein/anthocyanin binary system. Here, rice albumin (RA) and black rice anthocyanins (BRA) were used to prepare RA/BRA composite systems as a function of temperature (60-100 °C) and NaCl concentration (10-40 mM) or CaCl2 concentration (20 mM). It was revealed that the spontaneous complexing reaction between RA and BRA was driven by hydrophobic interactions and hydrogen bonds and becomes easier and more favorable at a higher temperature (≤90 °C), excessive temperature (100 °C), however, may result in the degradation of BRA. Moreover, the salt ion presence during thermal processing may bind with RA and BRA, respectively, which could restrict the interaction between BRA and RA. Additionally, the inclusion of Na+ or Ca2+ at 20 mM endowed the binary system with strengthened DPPH radical scavenging capacity (0.95 for Na+ and 0.99 for Ca2+). Notably, Ca2+ performed a greater impact on the stability of the system than Na+.


Subject(s)
Oryza , Anthocyanins , Albumins , Sodium Chloride , Sodium Chloride, Dietary , Edible Grain , Ions
2.
Food Res Int ; 180: 114069, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395558

ABSTRACT

While brown rice (BR) has numerous nutritional properties, the consumption potential of which is seriously restricted since the poor cooking quality and undesirable flavor. Here, edible oils (pork lard and corn oil, 1-5 wt%) were incorporated during the cooking of BR following heat moisture treatment. Incorporating corn oil rather than lard significantly ameliorated the texture properties (e.g. hardness, cohesiveness, and chewiness) and sensory properties of cooked BR. Both lard- and corn oil-incorporated cooked BR showed obvious structural changes accompanied by the formation of amylose-lipid complexes during cooking. It was confirmed that the incorporation of lard and corn oil allowed a higher degree of short-range molecular order, more V-type starch crystallites, and elevated nano-structural arrangements. Additionally, a decreased hardness (from 559.04 g to 424.18 g and 385.91 g, respectively) and enriched resistant starch (RS) were also observed, the highest RS content (15.95 % and 16.32 %, respectively) was observed when 1 wt% of lard and corn oil were incorporated.


Subject(s)
Oryza , Oryza/chemistry , Corn Oil , Hot Temperature , Cooking , Starch/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...