Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
J Mol Model ; 29(9): 293, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37620735

ABSTRACT

CONTEXT: The mechanical characteristics and deformation behavior of Cu material under the nanoscratching through a diamond tooltip on the workpiece are studied using molecular dynamics (MD) simulation. Effects of scratching velocity, scratching depth, workpiece temperature, and grain size on the total force, shear strain, pile-up, shear stress, workpiece temperature, and phase transformation are investigated. The results reveal that increasing the scratching velocity leads to higher oscillation in total force, greater shear strain and shear stress, higher pile-up on the workpiece surface, and higher workpiece temperatures. The effect of the scratching velocity on phase transformation shows that most of the dislocation is a transformation structure from the FCC structure to the HCP, BCC, and other structures in all workpieces during the nanoscratching process. In addition, with increasing the scratching depth, material pile-up becomes more prominent, consequently elevating the contact area between the diamond tooltip and the workpiece, which simultaneously leads to an increase in total force, shear strain, pile-up, shear stress, and workpiece temperature. The MD simulation results revealed that the subsurface region of nanoscratched Cu single-crystal experiences the formation of stacking faults, vacancy defects, and cluster vacancies. In studying the effect of workpiece temperature, the results show that higher temperatures lead to the decline of scratching force, high plastic deformation, increased shear strain and stress, lower pile-up height, and high transition from the FCC structure to both other and BCC structures. For polycrystalline structures, the force curves occur in the oscillation state in all cases of different grain sizes because of the dislocation deformation during the cutting process. The maximum force decreases with diminishing grain size, attributed to the inverse Hall-Petch relation. As the grain size increases, leading to a decrease in the shear strain, stress, and an uneven pile up; also, the HCP structure rises with decreasing grain boundary and the partial dislocation and stacking fault mobilize inside grains. METHODS: By using molecular dynamics (MD) simulation based on the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) software, all molecular interactions were described by the Lennard-Jones (LJ) and embedded atom method (EAM) potentials. In order to mitigate the effects of temperature fluctuations, the system employs an isothermal and isobaric (NPT) ensemble for precise temperature control. The temperature was set as 300 K and the time step was 1 fs (femtosecond).

2.
Beilstein J Nanotechnol ; 13: 1303-1315, 2022.
Article in English | MEDLINE | ID: mdl-36447561

ABSTRACT

The nano-punching characteristics of single-crystalline aluminum are investigated using the quasi-continuum (QC) method. Four variables (i.e., crystal orientation, workpiece thickness, clearance between the punch and the substrate, and the taper angle of punch) are used to explore their effect during the nano-punching process. The shear stress distribution is used to express the punching effect on the punch and on both sides of the substrates. Besides, fracture strength, residual flash, and the atomic displacement vector are observed and discussed regarding the behaviors of the nano-punching process under various conditions. Based on the results, the Al workpiece with the X[111]Y[-110] orientation presents less lattice resistance during the punching process. Besides, the thickness of the workpiece has a significant effect on the punching quality. Workpieces with thickness values of 5 and 10 Å are more suitable for punching, due to stable loading and unloading stress-displacement curves and less residual flash on the cutting surfaces of these workpieces. In contrast, the effect of clearance has less impact on the punching behaviors of thinner workpieces. However, for thicker workpieces (i.e., 15 and 20 Å), a larger clearance will likely cause more residual flash. Furthermore, the taper angle of the punch should not be larger than 10°, otherwise, it might damage the workpiece and the substrate.

3.
J Mol Model ; 28(10): 328, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36138158

ABSTRACT

In this study, the mechanical properties and plastic deformation responses of nanocrystalline Cr-Ni alloy were investigated via tensile tests by molecular dynamics (MD) simulation. The effect of various compositions, various grain sizes (GSs) from 4.7 to 11.0 nm, and various temperatures from 300 to 1500 K is analyzed. The results indicate that the yield strength of the polycrystalline Cr-Ni alloy decreases as decreasing GS, which shows the inverse Hall-Petch relation in the metal softening as reducing GS.  Young's modulus (E) increases in the order of the increasing GSs and single crystalline. E rises as raising the percent of Ni from 5 to 15% and then decreases as increasing %Ni to 20%. Besides, E is the linear decrease function with increasing temperature. The maximum stress decreases as increasing temperature and increasing %Ni from 5 to 15%. But that decreases as increasing %Ni from 15 to 20%. The maximum stress value of single crystalline is smaller than that of polycrystalline. The high shear strain zones depend on the GS and alloy composition. The shear strain zones focus on the grain boundary at a low temperature and disperse over the entire specimen when the specimen works at a high temperature. The reason is that the grain boundary helps release stresses to prolong the plastic deformation period to prevent rapid specimen destruction.

4.
Sci Rep ; 12(1): 7777, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35546613

ABSTRACT

For practical application, determining the thermal and mechanical characterization of nanoporous two-dimensional MoS2 membranes is critical. To understand the influences of the temperature and porosity on the mechanical properties of single-layer MoS2 membrane, uniaxial and biaxial tensions were conducted using molecular dynamics simulations. It was found that Young's modulus, ultimate strength, and fracture strain reduce with the temperature increases. At the same time, porosity effects were found to cause a decrease in the ultimate strength, fracture strain, and Young's modulus of MoS2 membranes. Because the pore exists, the most considerable stresses will be concentrated around the pore site throughout uniaxial and biaxial tensile tests, increasing the possibility of fracture compared to tensing the pristine membrane. Moreover, this article investigates the impacts of temperature, porosity, and length size on the thermal conductivity of MoS2 membrane using the non-equilibrium molecular dynamics (NEMD) method. The results show that the thermal conductivity of the MoS2 membrane is strongly dependent on the temperature, porosity, and length size. Specifically, the thermal conductivity decreases as the temperature increases, and the thermal conductivity reduces as the porosity density increases. Interestingly, the thermal and mechanical properties of the pristine MoS2 membrane are similar in armchair and zigzag directions.

5.
Sci Rep ; 12(1): 6306, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35428858

ABSTRACT

Hexagonal boron nitride (h-BN) is a promising 2D material due to its outstanding mechanical and thermal properties. In the present study, we use molecular dynamics simulations to investigate the influence of porosity and temperature on the mechanical characteristics of h-BN based on uniaxial and biaxial tensions. Meanwhile, the progression of the microstructure of h-BN up to fracture is studied in order to clarify its fractures mechanism during the tension process. Our results reveal that depending on the porosity and tensile direction, the phase transition occurs more or less. The strength, and Young's modulus of h-BN membranes reduce as increasing porosity. Due to the presence of the pores, the most substantial stresses will be centred around the pores site in the tensile test. Then the fracture starts on the pore edge and spreads preferentially along the zigzag direction of h-BN. Furthermore, fracture strain, strength, and Young's modulus decrease when the temperature rises. In addition, the non-equilibrium molecular dynamics (NEMD) simulations are performed to investigate the influence of various porosities and temperatures on the thermal conductivity of h-BN membranes. The results reveal that the thermal conductivity is greatly reduced by nanoporous. The higher the porosity, the lower the thermal conductivity. The vibration density of states of h-BN membranes is calculated; the result suggests that the defects might reduce the phonon mean free path because of the high collision of the phonons. These alterations represent the scattering influence of defects on phonons, which reduces phonon life and considerably lowers thermal conductivity. Moreover, the findings also proved that as temperature increases, the intrinsic thermal conductivity of h-BN decreases. The thermal conductivity and mechanical properties of the pristine h-BN thin film are interestingly equivalent in the zigzag and armchair orientations.

6.
Beilstein J Nanotechnol ; 12: 863-877, 2021.
Article in English | MEDLINE | ID: mdl-34476168

ABSTRACT

In the present study, the characteristics of graphene/polycrystalline copper nanolaminated (GPCuNL) composites under shear loading are investigated by molecular dynamics simulations. The effects of different temperatures, graphene chirality, repeat layer spacing, and grain size on the mechanical properties, such as failure mechanism, dislocation, and shear modulus, are observed. The results indicate that as the temperature increases, the content of Shockley dislocations will increase and the maximum shear stress of the zigzag and armchair directions also decreases. The mechanical strength of the zigzag direction is more dependent on the temperature than that of the armchair direction. Moreover, self-healing occurs in the armchair direction, which causes the shear stress to increase after failure. Furthermore, the maximum shear stress and the shear strength of the composites decrease with an increase of the repeat layer spacing. Also, the shear modulus increases by increasing the grain size of copper.

7.
Sci Rep ; 11(1): 17795, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34493794

ABSTRACT

This report explores the effects of machining depth, velocity, temperature, multi-machining, and grain size on the tribological properties of a diamond substrate. The results show that the appearance of graphite atoms can assist the machining process as it reduces the force. Moreover, the number of graphite atoms relies on the machining speed and substrate temperature improvement caused by the friction force. Besides, machining in a machined surface for multi-time is affected by its rough, amorphous, and deformed surface. Therefore, machining in the vertical direction for multi-time leads to a higher rate of deformation but a reduction in the rate of graphite atoms generation. Increasing the grain size could produce a larger graphite cluster, a higher elastic recovery rate, and a higher temperature but a lower force and pile-up height. Because the existence of the grain boundaries hinders the force transformation process, and the reduction in the grain size can soften the diamond substrate material.

8.
Sci Rep ; 11(1): 13680, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34211093

ABSTRACT

Molecular dynamics is applied to explore the deformation mechanism and crystal structure development of the AlCoCrFeNi high-entropy alloys under nanoimprinting. The influences of crystal structure, alloy composition, grain size, and twin boundary distance on the mechanical properties are carefully analyzed. The imprinting load indicates that the highest loading force is in ascending order with polycrystalline, nano-twinned (NT) polycrystalline, and monocrystalline. The change in alloy composition suggests that the imprinting force increases as the Al content in the alloy increases. The reverse Hall-Petch relation found for the polycrystalline structure, while the Hall-Petch and reverse Hall-Petch relations are discovered in the NT-polycrystalline, which is due to the interactions between the dislocations and grain/twin boundaries (GBs/TBs). The deformation behavior shows that shear strain and local stress are concentrated not only around the punch but also on GBs and adjacent to GBs. The slide and twist of the GBs play a major in controlling the deformation mechanism of polycrystalline structure. The twin boundary migrations are detected during the nanoimprinting of the NT-polycrystalline. Furthermore, the elastic recovery of material is insensitive to changes in alloy composition and grain size, and the formability of the pattern is higher with a decrease in TB distance.

9.
Sci Rep ; 11(1): 12123, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34108570

ABSTRACT

Evaluating the effect of porosity and ambient temperature on mechanical characteristics and thermal conductivity is vital for practical application and fundamental material property. Here we report that ambient temperature and porosity greatly influence fracture behavior and material properties. With the existence of the pore, the most significant stresses will be concentrated around the pore position during the uniaxial and biaxial processes, making fracture easier to occur than when tensing the perfect sheet. Ultimate strength and Young's modulus degrade as porosity increases. The ultimate strength and Young's modulus in the zigzag direction is lower than the armchair one, proving that the borophene membrane has anisotropy characteristics. The deformation behavior of borophene sheets when stretching biaxial is more complicated and rough than that of uniaxial tension. In addition, the results show that the ultimate strength, failure strain, and Young's modulus degrade with growing temperature. Besides the tensile test, this paper also uses the non-equilibrium molecular dynamics (NEMD) approach to investigate the effects of length size, porosity, and temperature on the thermal conductivity (κ) of borophene membranes. The result points out that κ increases as the length increases. As the ambient temperature increases, κ decreases. Interestingly, the more porosity increases, the more κ decreases. Moreover, the results also show that the borophene membrane is anisotropic in heat transfer.

10.
Nanotechnology ; 32(16): 165704, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33418547

ABSTRACT

In this study, an indentation simulation is employed to study the anisotropic crack propagation and re-forming mechanism of freestanding black phosphorus (FBP) nanosheets by molecular dynamics simulation. The results indicate that the size of the FBP nanosheet decides the crack direction as well as the von Mises stress concentration. It is found that crack directions are not influenced by temperature. With increasing specimen size, the crack propagation rate is nearly the same as at the first stage of crack formation, while in the later stage, cracking develops very quickly in larger specimens. Especially, small FBP nanosheets almost re-form in a short time at ambient temperature. However, after being destroyed, the larger specimen has no possibility of recovery. Besides, when increasing the number of layers of FBP, the energy stored by the top layer and the system undergoing deformation increases. In addition, the specimen with two fixed edges is less stable, leading to increased stress and decreased Young's modulus compared with the specimen with four fixed edges.

11.
Sci Rep ; 10(1): 15082, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32934331

ABSTRACT

We conduct molecular dynamics simulations to study the mechanical and thermal properties of monolayer indium selenide (InSe) sheets. The influences of temperature, intrinsic structural defect on the tensile properties were assessed by tensile strength, fracture strain, and Young's modulus. We found that the tensile strength, fracture strain, and Young's modulus reduce as increasing temperature. The results also indicate that with the existence of defects, the stress is concentrated at the region around the vacancy leading to the easier destruction. Therefore, the mechanical properties were considerably decreased with intrinsic structural defects. Moreover, Young's modulus is isotropy in both zigzag and armchair directions. The point defect almost has no influence on Young's modulus but it strongly influences the ultimate strength and fracture strain. Besides, the effects of temperature, length size, vacancy defect on thermal conductivity (κ) of monolayer InSe sheets were also studied by using none-equilibrium molecular dynamics simulations. The κ significantly arises as increasing the length of InSe sheets. The κ of monolayer InSe with infinite length at 300 K in armchair direction is 46.18 W/m K, while in zigzag direction is 45.87 W/m K. The difference of κ values in both directions is very small, indicating the isotropic properties in thermal conduction of this material. The κ decrease as increasing the temperature. The κ goes down with the number of atoms vacancy defect increases.

12.
J Nanosci Nanotechnol ; 20(10): 6389-6395, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32384989

ABSTRACT

In this study, corrosion-resistant composite coatings were produced by incorporating zinc (Zn) nanoparticles in an epoxy resin and a hybrid silicone resin. While performing sodium chloride saltspray tests, the corrosion performance of the nano-composite coatings was evaluated by applying these corrosion-resistant composite coatings on a carbon steel substrate. The nano-composite coatings on the substrates were characterized by an adhesion test, scanning electron microscope (SEM), and transmission electron microscope (TEM) with energy-dispersive X-ray spectroscopy (EDX). The results of the salt-spray tests showed that the Zn nanoparticles in the epoxy and hybrid silicone resins could react with permeated oxygen, thereby improving the anticorrosion properties of the Zn nano-composites. The corroded area of the epoxy resin samples decreased from more than 80% without Zn doping to less than 5% in a 3000-ppm Zn-doped sample after a 500-h saltspray test. An evaluation of the bactericidal properties showed that the Zn/epoxy and Zn/hybrid silicone resin nano-composites with at least 360 ppm of Zn nanoparticles exhibited bactericidal ability, which remarkably increased with the Zn nanoparticles content. The corrosion-resistant properties improved with the addition of Zn nano-composites coatings.

13.
J Mol Model ; 24(9): 222, 2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30076483

ABSTRACT

The effects of contact length, crystal orientation, and material type of welded pairs on side-to-side nanowelding are studied using quasi-continuum simulations. These effects are investigated in terms of atomic trajectories, strain distributions, and stress-strain curves. The simulation results show that the welding strength of welded pairs increases with decreasing contact length, regardless of their structural orientations. Welding with structural orientations of [Formula: see text] (for one nanowire) and [111] (for the other nanowire) results in a significant yield phenomenon during the separation process due to the migration of the deformation region from the root of tips to the interior of the top tip above the welding interface. Welding with structural orientations of [111] and [Formula: see text] results in relatively poor elasticity and ductility. For welding with one type of material, during the separation process, damage may occur at the top tip instead of at the welding interface. The welding strength of the Ni-Ni welded pair is higher than those of the Ni-Cu and Cu-Cu welded pairs.

14.
Beilstein J Nanotechnol ; 9: 1000-1014, 2018.
Article in English | MEDLINE | ID: mdl-29719752

ABSTRACT

A quasi-continuum (QC) method based on the embedded atom method (EAM) potential was employed to investigate the fatigue crack growth and expansion characteristics of single-crystal Fe and Ni under cyclic loading modes I and II. In particular, the crack growth and expansion characteristics of Fe and Ni under cyclic loading were evaluated in terms of atomic stress fields and force-distance curves. The simulation results indicated that under cyclic loading, the initially damaged area of the crack will coalesce again after compression or shear to the initial geometry leading to a strengthening of the material. If no coalescence appears, the crack spreads rapidly and the material breaks. Moreover, under the cyclic loading of shear at any orientation, the slip dislocation observed in the materials considerably affects the release of stress.

15.
J Nanosci Nanotechnol ; 18(1): 39-43, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29768808

ABSTRACT

A molecular dynamics simulation is carried out to study the physisorption of H2, CO, CO2, N2, O2 and CH4 in the pillared graphene structure under various environment. The excess adsorption number is calculated and found to be negative for H2 at 300 K. Further the energy condition not distance between adsorbate and adsorbent is used to define the physisorption number. We found the excess adsorption number is smaller than physisorption number at normal environment, except for the gas at the supercritical fluid.

16.
J Nanosci Nanotechnol ; 18(4): 2576-2581, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29442929

ABSTRACT

We have used different molybdenum disulfide (MoS2) nanoparticle concentrations (0~10 wt%) for doping the hybrid active P3HT:PCBM layer. The root mean square (rms) roughness of the layer increased as the MoS2 nanoparticle concentration increased. The hybrid film with MoS2 has higher absorption intensity than the pristine film. The maximum power conversion efficiency (PCE) was 2.73% with 5 wt% MoS2 concentration, higher than that (2.08%) obtained without MoS2.

17.
Beilstein J Nanotechnol ; 8: 2283-2295, 2017.
Article in English | MEDLINE | ID: mdl-29181285

ABSTRACT

The dynamic nanomechanical characteristics of Cu films with different grain boundaries under nanoindentation and scratch conditions were studied by molecular dynamics (MD) simulations. The type of grain boundary is the main factor in the control of the substrate atoms with respect to the size of dislocations since the existence of the grain boundary itself restricts the movement associated with dislocations. In this work, we analyzed the transverse and vertical grain boundaries for different angles. From the simulation results, it was found that the sample with a transverse grain boundary angle of 20° had a higher barrier effect on the slip band as compared to samples with other angles. Moreover, the nanoindentation results (i.e., indentation on the upper area) of the vertical grain boundary showed that the force was translated along the grain boundary, thereby producing intergranular fractures.

18.
Nanoscale Res Lett ; 12(1): 31, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28091943

ABSTRACT

The ultraviolet (UV) photodetectors with ZnO nanorods (NRs)/CdS thin film heterostructures on glass substrates have been fabricated and characterized. It can be seen that the UV photoresponsivity of such a device became higher as the ZnO NR length was increased in the investigation. With an incident wavelength of 350 nm and 5 V applied bias, the responsivity of photodetectors based on ZnO NR/CdS heterostructures with the ZnO NR length at 500, 350, and 200 nm and traditional CdS film were at 12.86, 3.83, 0.91, and 0.75 A/W, respectively. The measurement results of the fabricated photodetectors based on ZnO nanorods (NRs)/CdS heterostructures have shown a significant high sensitivity in the range of UV light, which can be useful for the application of UV detection.

19.
Nanoscale Res Lett ; 11(1): 401, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27637893

ABSTRACT

Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method.

20.
J Nanosci Nanotechnol ; 16(3): 2603-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27455676

ABSTRACT

Strength and mechanical properties of single crystal sodium chloride (NaCl) are characterized. Critical deformation variations of NaCl pillared structures and films are estimated using in-situ transmission electron microscope (TEM) compression tests and nanoindentation experiments. Young's modulus and contact stiffness of NaCl pillars with diameters of 300 to 500 nm were 10.4-23.9 GPa, and 159-230 N/m, respectively. The nanohardness and Vickers hardness of the NaCl (001) film were 282-596 and 196-260 MPa, respectively. The results could provide useful information for understanding the mechanical properties, contact and local deformation of NaCl pillars and films.


Subject(s)
Microscopy, Electron, Transmission/methods , Sodium Chloride/chemistry , Microscopy, Atomic Force , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...