Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Lung Cancer ; 25(2): 100-108, 2024 03.
Article in English | MEDLINE | ID: mdl-38172024

ABSTRACT

The discovery of epidermal growth factor receptor (EGFR) mutations has greatly changed the clinical outlook for patients with advanced non-small-cell lung cancer (NSCLC). Unlike the most common EGFR mutations, such as exon 19 deletion (del19) and exon 21 L858R point mutation, EGFR exon 20 insertion mutation (EGFR ex20ins) is a rare mutation of EGFR. Due to its structural specificity, it exhibits primary resistance to traditional epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), leading to poor overall survival prognosis for patients. In recent years, there has been continuous progress in the development of new drugs targeting EGFR ex20ins, bringing new hope for the treatment of this patient population. In this regard, we conducted a systematic review of the molecular characteristics, diagnostic advances, and treatment status of EGFR ex20ins. We summarized the latest data on relevant drug development and clinical research, aiming to provide reference for clinical diagnosis, treatment, and drug development.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutagenesis, Insertional , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , ErbB Receptors , Mutation/genetics , Exons/genetics
2.
Curr Oncol ; 30(6): 5337-5349, 2023 05 28.
Article in English | MEDLINE | ID: mdl-37366888

ABSTRACT

Afatinib, the world's first irreversible ErbB family (containing four different cancer cell epidermal growth factor receptors, including EGFR, HER2, ErbB3, and ErbB4) inhibitor, is a second-generation oral epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). It can be used as a first-line treatment for locally advanced or metastatic non-small-cell lung cancer (NSCLC) with an EGFR-sensitive mutation or for patients with locally advanced or metastatic squamous lung cancer whose disease progresses during or after platinum-containing chemotherapy. Currently, with the use of third-generation EGFR-TKIs, afatinib is no longer clinically indicated as the first choice for patients with NSCLC who have EGFR-sensitive mutations. However, afatinib showed a considerable inhibitory effect in NSCLC patients with uncommon EGFR mutations (G719X, S768I, and L861Q) according to a combined post hoc analysis of the LUX-Lung2/3/6 trials. With the development of genetic testing technology, the detection rate of uncommon EGFR mutations is increasing. The aim of this paper is to describe in detail the sensitivity of rare EGFR mutations to afatinib and to provide information and a reference for those suffering from advanced NSCLC who have uncommon EGFR mutations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Afatinib/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Protein Kinase Inhibitors/adverse effects , ErbB Receptors/genetics , Mutation
3.
Curr Oncol ; 29(10): 7816-7831, 2022 10 16.
Article in English | MEDLINE | ID: mdl-36290895

ABSTRACT

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases and is the leading cause of cancer-related death. Despite advances in chemotherapy and immunotherapy, the prognosis for advanced patients remains poor. The discovery of oncogenic driver mutations, such as anaplastic lymphoma kinase (ALK) mutations, means that a subset of patients has opportunities for targeted therapy. With the improvement of genetic testing coverage, more and more ALK fusion subtypes and ALK partners have been discovered, and more than 90 rare ALK fusion subtypes have been found in NSCLC. However, unlike the common fusion, echinoderm microtubule-associated protein-like 4 (EML4)-ALK, some rare ALK fusions such as striatin (STRN)-ALK and huntingtin interacting protein 1 (HIP1)-ALK, etc., the large-scale clinical data related to its efficacy are still immature. The clinical application of ALK-tyrosine kinase inhibitors (ALK-TKIs) mainly depends on the positivity of the ALK gene, regardless of the molecular characteristics of the fusion partner. Recent clinical studies in the ALK-positive NSCLC population have demonstrated differences in progression-free survival (PFS) among patients based on different ALK fusion subtypes. This article will introduce the biological characteristics of ALK fusion kinase and common detection methods of ALK fusion and focus on summarizing the differential responses of several rare ALK fusions to ALK-TKIs, and propose corresponding treatment strategies, so as to better guide the application of ALK-TKIs in rare ALK fusion population.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Anaplastic Lymphoma Kinase/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Oncogene Proteins, Fusion/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...