Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Hortic Res ; 11(1): uhad265, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38298900

ABSTRACT

Peach (Prunus persica) landrace has typical regional characteristics, strong environmental adaptability, and contains many valuable genes that provide the foundation for breeding excellent varieties. Therefore, it is necessary to assemble the genomes of specific landraces to facilitate the localization and utilization of these genes. Here, we de novo assembled a high-quality genome from an ancient blood-fleshed Chinese landrace Tianjin ShuiMi (TJSM) that originated from the China North Plain. The assembled genome size was 243.5 Mb with a contig N50 of 23.7 Mb and a scaffold N50 of 28.6 Mb. Compared with the reported peach genomes, our assembled TJSM genome had the largest number of specific structural variants (SVs) and long terminal repeat-retrotransposons (LTR-RTs). Among the LTR-RTs with the potential to regulate their host genes, we identified a 6688 bp LTR-RT (named it blood TE) in the promoter of NAC transcription factor-encoding PpBL, a gene regulating peach blood-flesh formation. The blood TE was not only co-separated with the blood-flesh phenotype but also associated with fruit maturity date advancement and different intensities of blood-flesh color formation. Our findings provide new insights into the mechanism underlying the development of the blood-flesh color and determination of fruit maturity date and highlight the potential of the TJSM genome to mine more variations related to agronomic traits in peach fruit.

2.
Plant Sci ; 335: 111778, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37353009

ABSTRACT

Gene presence/absence variation (PAV) is an important contributor to the studies of genetic diversity, gene identification, and molecular marker development in plants. In the present study, 100 peach (Prunus persica) accessions were used for genome resequencing to identify PAVs. Alignmentwith a reference genome yielded a total of 2.52 Mb non-reference sequences and 923 novel genes were identified. The dispensable PAVs were enriched in resistance, perhaps reflecting their roles in plant adaptation to various environments. Furthermore, selection sweeps associated with peach domestication and improvement were identified based on PAV data. Only 4.3% and 13.4% of domestication and improvement sweeps, respectively, were identified simultaneously using single nucleotide polymorphism (SNP) data, suggesting flexible identification between the different methods. To further verify the applicability of PAV identification, a genome-wide association study was conducted using 21 agronomic traits. Some of the identified loci were consistent with those reported in previous studies, while some were mapped for the first time; the latter included petiole length, petiole gland shape, and petiole gland number. Through tissue-specific expression analysis and gene transformation experiments, a novel gene, evm.model.Contig322_A94.1, was identified and found to be involved in chilling requirements. We speculated that this novel gene might regulate the trait by participating in the ABA signaling pathway. The PAVs identified in P. persica provide valuable resources for mapping the entire gene set and identifying optional markers for molecular selection in future studies.


Subject(s)
Prunus persica , Prunus persica/genetics , Genome-Wide Association Study , Domestication , Agriculture , Sequence Analysis, DNA , Genome, Plant/genetics , Polymorphism, Single Nucleotide/genetics
3.
Plant Physiol ; 193(1): 448-465, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37217835

ABSTRACT

Bud dormancy is crucial for winter survival and is characterized by the inability of the bud meristem to respond to growth-promotive signals before the chilling requirement (CR) is met. However, our understanding of the genetic mechanism regulating CR and bud dormancy remains limited. This study identified PpDAM6 (DORMANCY-ASSOCIATED MADS-box) as a key gene for CR using a genome-wide association study analysis based on structural variations in 345 peach (Prunus persica (L.) Batsch) accessions. The function of PpDAM6 in CR regulation was demonstrated by transiently silencing the gene in peach buds and stably overexpressing the gene in transgenic apple (Malus × domestica) plants. The results showed an evolutionarily conserved function of PpDAM6 in regulating bud dormancy release, followed by vegetative growth and flowering, in peach and apple. The 30-bp deletion in the PpDAM6 promoter was substantially associated with reducing PpDAM6 expression in low-CR accessions. A PCR marker based on the 30-bp indel was developed to distinguish peach plants with non-low and low CR. Modification of the H3K27me3 marker at the PpDAM6 locus showed no apparent change across the dormancy process in low- and non-low- CR cultivars. Additionally, H3K27me3 modification occurred earlier in low-CR cultivars on a genome-wide scale. PpDAM6 could mediate cell-cell communication by inducing the expression of the downstream genes PpNCED1 (9-cis-epoxycarotenoid dioxygenase 1), encoding a key enzyme for ABA biosynthesis, and CALS (CALLOSE SYNTHASE), encoding callose synthase. We shed light on a gene regulatory network formed by PpDAM6-containing complexes that mediate CR underlying dormancy and bud break in peach. A better understanding of the genetic basis for natural variations of CR can help breeders develop cultivars with different CR for growing in different geographical regions.


Subject(s)
Malus , Prunus persica , Prunus , Prunus persica/genetics , Prunus persica/metabolism , Prunus/genetics , Prunus/metabolism , Histones/metabolism , Genome-Wide Association Study , Malus/genetics , Gene Expression Regulation, Plant , Plant Dormancy/genetics
4.
Plant Sci ; 333: 111735, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37230192

ABSTRACT

Fruit maturity is an important agronomic trait of fruit crops. Although in previous studies, several molecular markers are developed for the trait, the knowledge about its candidate genes is particularly limited. In this study, a total of 357 peach accessions were re-sequenced to obtain 949,638 SNPs. Combing with 3-year fruit maturity dates, a genome-wide association analysis was performed, and 5, 8, and 9 association loci were identified. To screen the candidate genes for those year-stable loci on chromosomes 4 and 5, two maturity date mutants were used for transcriptome sequencing. Gene expression analysis indicated that Prupe.4G186800 and Prupe.4G187100 on chromosome 4 were essential to fruit ripening in peaches. However, the expression analysis of different tissues showed that the first gene has no tissue-specific character, but transgenic studies showed that the latter is more likely to be a key candidate gene than the first for the maturity date in peach. The yeast two-hybrid assay showed that the proteins encoded by the two genes interacted and then regulated fruit ripening. Moreover, the previously identified 9 bp insertion in Prupe.4G186800 may affect their interaction ability. This research is of great significance for understanding the molecular mechanism of peach fruit ripening and developing practical molecular markers in a breeding program.


Subject(s)
Prunus persica , Prunus persica/genetics , Genome-Wide Association Study , Fruit/genetics , Plant Breeding , Polymorphism, Single Nucleotide
5.
J Agric Food Chem ; 70(40): 12865-12877, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36173088

ABSTRACT

Wild pest-resistant germplasms employ secondary metabolites to withstand insect attacks. A close wild relative of the cultivated peach, Prunus davidiana, displays strong resistance to green peach aphids by utilizing metabolites to cope with aphid infestation; however, the underlying mechanism of aphid resistance remains mostly unknown. Here, metabolomic analysis was performed to explore the changes in metabolite levels in P. davidiana after aphid infestation. The data revealed that betulin is a key defensive metabolite in peaches that protects against aphids and possesses potent aphidicidal activity. Further toxicity tests demonstrated that betulin was toxic to pests but not to beneficial insects. Additionally, transcriptomic and phylogenetic analyses revealed that the cytochrome P450 gene PpCYP716A1 was responsible for betulin synthesis─this finding was confirmed by the heterologous expression of this gene. This study revealed a strategy whereby plants harness defense metabolites to develop resistance to pests. These findings may facilitate controlling such pests.


Subject(s)
Aphids , Prunus , Animals , Cytochrome P-450 Enzyme System/genetics , Phylogeny , Prunus/genetics , Triterpenes
6.
Genome Biol ; 23(1): 146, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35788225

ABSTRACT

BACKGROUND: Plant metabolites reshaped by nature and human beings are crucial for both their lives and human health. However, which metabolites respond most strongly to selection pressure at different evolutionary stages and what roles they undertake on perennial fruit crops such as peach remain unclear. RESULTS: Here, we report 18,052 significant locus-trait associations, 12,691 expression-metabolite correlations, and 294,676 expression quantitative trait loci (eQTLs) for peach. Our results indicate that amino acids accumulated in landraces may be involved in the environmental adaptation of peaches by responding to low temperature and drought. Moreover, the contents of flavonoids, the major nutrients in fruits, have kept decreasing accompanied by the reduced bitter flavor during both domestication and improvement stages. However, citric acid, under the selection of breeders' and consumers' preference for flavor, shows significantly different levels between eastern and western varieties. This correlates with differences in activity against cancer cells in vitro in fruit from these two regions. Based on the identified key genes regulating flavonoid and acid contents, we propose that more precise and targeted breeding technologies should be designed to improve peach varieties with rich functional contents because of the linkage of genes related to bitterness and acid taste, antioxidant and potential anti-cancer activity that are all located at the top of chromosome 5. CONCLUSIONS: This study provides powerful data for future improvement of peach flavor, nutrition, and resistance in future and expands our understanding of the effects of natural and artificial selection on metabolites.


Subject(s)
Prunus persica , Domestication , Fruit/genetics , Humans , Metabolome , Plant Breeding , Prunus persica/genetics
7.
BMC Biol ; 20(1): 139, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35698132

ABSTRACT

BACKGROUND: Peach (Prunus persica) is an economically important stone fruit crop in Rosaceae and widely cultivated in temperate and subtropical regions, emerging as an excellent material to study the interaction between plant and environment. During its genus, there are four wild species of peach, all living in harsh environments. For example, one of the wild species, P. mira, originates from the Qinghai-Tibet Plateau (QTP) and exhibits strong cold/ultraviolet ray environmental adaptations. Although remarkable progresses in the gene discovery of fruit quality-related traits in peach using previous assembled genome were obtained, genomic basis of the response of these wild species to different geographical environments remains unclear. RESULTS: To uncover key genes regulating adaptability in different species and analyze the role of genetic variations in resistance formation, we performed de novo genome assembling of four wild relatives of peach (P. persica), P. mira, P. davidiana, P. kansuensis, and P. ferganensis and resequenced 175 peach varieties. The phylogenetic tree showed that the divergence time of P. mira and other wild relatives of peach was 11.5 million years ago, which was consistent with the drastic crustal movement of QTP. Abundant genetic variations were identified in four wild species when compared to P. persica, and the results showed that plant-pathogen interaction pathways were enriched in genes containing small insertions and deletions and copy number variations in all four wild relatives of peach. Then, the data were used to identify new genes and variations regulating resistance. For example, presence/absence variations which result from a hybridization event that occurred between P. mira and P. dulcis enhanced the resistance of their putative hybrid, P. davidiana. Using bulked segregant analysis, we located the nematode resistance locus of P. kansuensis in chromosome 2. Within the mapping region, a deletion in the promoter of one NBS-LRR gene was found to involve the resistance by regulating gene expression. Furthermore, combined with RNA-seq and selective sweeps analysis, we proposed that a deletion in the promoter of one CBF gene was essential for high-altitude adaptation of P. mira through increasing its resistance to low temperature. CONCLUSIONS: In general, the reference genomes assembled in the study facilitate our understanding of resistance mechanism of perennial fruit crops, and provide valuable resources for future breeding and improvement.


Subject(s)
Prunus persica , Chromosomes , DNA Copy Number Variations , Evolution, Molecular , Genome, Plant , Phylogeny , Plant Breeding , Prunus persica/genetics
8.
Hortic Res ; 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35184194

ABSTRACT

Organic acid content in fruit is an important determinant of peach organoleptic quality, which undergoes considerable variations during development and maturation. However, its molecular mechanism remains largely unclear. In this study, an integrative approach of genome-wide association studies and comparative transcriptome analysis were applied to identify candidate genes involved in organic acid accumulation in peach. A key gene PpTST1, encoding tonoplast sugar transporter, was identified and the genotype of PpTST1 with a single-base transversion (G1584T) in the third exon which leads to a single amino acid substitution (Q528H) was associated with low level of organic acid content in peach. Overexpression of PpTST1His resulted in reduced organic acid content along with increased sugar content both in peach and tomato fruits, suggesting its dual function in sugar accumulation and organic acid content reduction. Two V-type proton ATPases interact with PpTST1 in yeast two-hybridization assay. In addition, the G1584T transversion appeared and gradually accumulated during domestication and improvement, which indicated that PpTST1 was under selection. The identification and characterization of PpTST1 would facilitate the improvement of peach fruit quality.

9.
Plant Sci ; 316: 111151, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35151460

ABSTRACT

Flavonoids, particularly anthocyanin is the main pigment that determined the red color of peach flowers, and help the plant to attract pollinators, protect the reproductive organs of flower from photo-oxidative effects of light and various non-communicable diseases. Through weightage gene coexpression network analysis (WGCNA) we identified a network of 15 hub genes that co-expressed throughout peach flower development including 5 genes coded for the key enzymes (CHI, F3'H, DFR, LAR and UFGT) of flavonoid biosynthetic pathway and 1 gene Prupe.1G111700 identified as R2R3 family transcription factor MYB108. Over expression of PpMYB108 significantly increased anthocyanin biosynthesis in Tobacco flowers. Moreover, the expression correlation between PpMYB108 and PpDFR, suggests that PpMYB108 play the role of transcriptional activator for PpDFR. This was further supported by a 6 bp insertion of MYB biding site in the core promoter region of PpDFR in red flower. The positive interaction of PpMYB108 with PpDFR promoter from red flower was confirmed in yeast one hybrid assay. These findings may be helpful in peach breeding programs as well as in identifying anthocyanin related genes in other species.


Subject(s)
Prunus persica , Anthocyanins , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Gene Regulatory Networks , Pigmentation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Prunus persica/genetics , Prunus persica/metabolism
10.
Plant J ; 108(1): 281-295, 2021 10.
Article in English | MEDLINE | ID: mdl-34309935

ABSTRACT

Peach (Prunus persica L. Batsch) is an economically important fruit crop worldwide. Although a high-quality peach genome has previously been published, Sanger sequencing was used for its assembly, which generated short contigs. Here, we report a chromosome-level genome assembly and sequence analysis of Chinese Cling, an important founder cultivar for peach breeding programs worldwide. The assembled genome contained 247.33 Mb with a contig N50 of 4.13 Mb and a scaffold N50 of 29.68 Mb, representing 99.8% of the estimated genome. Comparisons between this genome and the recently published one (Lovell peach) uncovered 685 407 single nucleotide polymorphisms, 162 655 insertions and deletions, and 16 248 structural variants. Gene family analysis highlighted the contraction of the gene families involved in flavone, flavonol, flavonoid, and monoterpenoid biosynthesis. Subsequently, the volatile compounds of 256 peach varieties were quantitated in mature fruits in 2015 and 2016 to perform a genome-wide association analysis. A comparison with the identified domestication genomic regions allowed us to identify 25 quantitative trait loci, associated with seven volatile compounds, in the domestication region, which is consistent with the differences in volatile compounds between wild and cultivated peaches. Finally, a gene encoding terpene synthase, located within a previously reported quantitative trait loci region, was identified to be associated with linalool synthesis. Such findings highlight the importance of this new assembly for the analysis of evolutionary mechanisms and gene identification in peach species. Furthermore, this high-quality peach genome provides valuable information for future fruit improvement.


Subject(s)
Genome, Plant/genetics , Prunus persica/genetics , Quantitative Trait Loci/genetics , Domestication , Evolution, Molecular , Fruit/chemistry , Fruit/genetics , Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide/genetics , Prunus persica/chemistry , Volatile Organic Compounds/analysis
11.
Sci Rep ; 11(1): 7302, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790378

ABSTRACT

Quantitative real-time PCR (qRT-PCR) has been emerged as an effective method to explore the gene function and regulatory mechanisms. However, selecting appropriate reference gene (s) is a prerequisite for obtaining accurate qRT-PCR results. Peach is one of important fruit in Rosaceae and is widely cultivated worldwide. In this study, to explore reliable reference gene (s) in peach with different types during fruit ripening and softening (S1-S4), nine candidate reference genes (EF-1α, GAPDH, TBP, UBC, eIF-4α, TUB-A, TUB-B, ACTIN, and HIS) were selected from the whole-genome data. Then, the expression levels of the nine selected genes were detected using qRT-PCR in three peach types, including 'Hakuho' (melting type), 'Xiacui' (stony hard type), 'Fantasia' and 'NJC108' (non-melting type) cultivars were detected using qRT-PCR. Four software (geNorm, NormFinder, BestKeeper and RefFinder) were applied to evaluate the expression stability of these candidate reference genes. Gene expression was characterized in different peach types during fruit ripening and softening stages. The overall performance of each candidate in all samples was evaluated. The Actin gene (ACTIN) was a suitable reference gene and displayed excellent stability in 'Total' set, 'Hakuho' samples, S3 and S4 fruit developmental stages. Ubiquitin C gene (UBC) showed the best stability in most independent samples, including 'Fantasia', 'NJC108', S2 sets. Elongation factor-1α gene (EF-1α) was the most unstable gene across the set of all samples, 'NJC108' and S2 sets, while showed the highest stability in 'Xiacui' samples. The stability of candidate reference genes was further verified by analyzing the relative expression level of ethylene synthase gene of Prunus persica (PpACS1) in fruit ripening and softening periods of 'Hakuho'. Taken together, the results from this study provide a basis for future research on the mining of important functional genes, expression patterns and regulatory mechanisms in peach.


Subject(s)
Plant Proteins/genetics , Prunus persica/genetics , Real-Time Polymerase Chain Reaction/standards , Fruit/genetics , Fruit/growth & development , Fruit/standards , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Plant Proteins/metabolism , Prunus persica/growth & development , Real-Time Polymerase Chain Reaction/methods , Reference Standards
12.
Genome Res ; 31(4): 592-606, 2021 04.
Article in English | MEDLINE | ID: mdl-33687945

ABSTRACT

The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates. A total of 2092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using genome-wide environmental association studies (GWEAS), a total of 2755 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UVB, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 yr of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and breeding.


Subject(s)
Adaptation, Physiological/genetics , Climate Change , Genome, Plant/genetics , Genomics , Prunus persica/genetics
13.
BMC Plant Biol ; 21(1): 88, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33568056

ABSTRACT

BACKGROUND: Fruit abortion is a major limiting factor for fruit production. In flat peach, fruit abortion is present in the whole tree of some accessions during early fruit development. However, the physiological factors and genetic mechanism underlying flat fruit abortion remain largely elusive. RESULTS: In this study, we have revealed that the fertilization process was accomplished and the reduction of sucrose and starch contents might result in flat fruit abortion. By combining association and gene expression analysis, a key candidate gene, PpSnRK1ßγ, was identified. A 1.67-Mb inversion co-segregated with flat fruit shape altered the promoter activity of PpSnRK1ßγ, resulting in much lower expression in aborting flat peach. Ectopic transformation in tomato and transient overexpression in peach fruit have shown that PpSnRK1ßγ could increase sugar and starch contents. Comparative transcriptome analysis further confirmed that PpSnRK1ßγ participated in carbohydrate metabolism. Subcellular localization found that PpSnRK1ßγ was located in nucleus. CONCLUSIONS: This study provides a possible reason for flat fruit abortion and identified a critical candidate gene, PpSnRK1ßγ, that might be responsible for flat fruit abortion in peach. The results will provide great help in peach breeding and facilitate gene identification for fruit abortion in other plant species.


Subject(s)
Fruit/growth & development , Fruit/genetics , Phosphotransferases/metabolism , Prunus persica/growth & development , Prunus persica/genetics , Starch/metabolism , Sucrose/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Phosphotransferases/genetics , Prunus persica/metabolism
14.
Front Plant Sci ; 12: 763618, 2021.
Article in English | MEDLINE | ID: mdl-35197988

ABSTRACT

Peach gummosis is one of the most widespread and destructive diseases. It causes growth stunting, yield loss, branch, trunk, and tree death, and is becoming a restrictive factor in healthy and sustainable development of peach production. Although a locus has been identified based on bi-parental quantitative trait locus (QTL) mapping, selection of gummosis-resistant cultivars remains challenging due to the lack of resistant parents and of the complexity of an inducing factor. In this study, an integrated approach of genome-wide association study (GWAS) and comparative transcriptome was used to elucidate the genetic architecture associated with the disease using 195 accessions and 145,456 genome-wide single nucleotide polymorphisms (SNPs). The broad-sense and narrow-sense heritabilities were estimated using 2-year phenotypic data and genotypic data, which gave high values of 70 and 73%, respectively. Evaluation of population structure by neighbor-joining and principal components analysis (PCA) clustered all accessions into three major groups and six subgroups, mainly according to fruit shape, hairy vs. glabrous fruit skin, pedigree, geographic origin, and domestication history. Five SNPs were found to be significantly associated with gummosis disease resistance, of which SNPrs285957, located on chromosome6 across 28 Mb, was detected by both the BLINK and the FarmCPU model. Six candidate genes flanked by or harboring the significant SNPs, previously implicated in biotic stress tolerance, were significantly associated with this resistance. Two highly resistant accessions were identified with low disease severity, which could be potential sources of resistance genes for breeding. Our results provide a fresh insight into the genetic control of peach gummosis disease.

15.
Genome Biol ; 21(1): 258, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33023652

ABSTRACT

BACKGROUND: Genome structural variations (SVs) have been associated with key traits in a wide range of agronomically important species; however, SV profiles of peach and their functional impacts remain largely unexplored. RESULTS: Here, we present an integrated map of 202,273 SVs from 336 peach genomes. A substantial number of SVs have been selected during peach domestication and improvement, which together affect 2268 genes. Genome-wide association studies of 26 agronomic traits using these SVs identify a number of candidate causal variants. A 9-bp insertion in Prupe.4G186800, which encodes a NAC transcription factor, is shown to be associated with early fruit maturity, and a 487-bp deletion in the promoter of PpMYB10.1 is associated with flesh color around the stone. In addition, a 1.67 Mb inversion is highly associated with fruit shape, and a gene adjacent to the inversion breakpoint, PpOFP1, regulates flat shape formation. CONCLUSIONS: The integrated peach SV map and the identified candidate genes and variants represent valuable resources for future genomic research and breeding in peach.


Subject(s)
Fruit/genetics , Genome, Plant , Genomic Structural Variation , Prunus persica/genetics , Anthocyanins/metabolism , Fruit/growth & development , Fruit/metabolism
16.
Plant Biotechnol J ; 17(10): 1954-1970, 2019 10.
Article in English | MEDLINE | ID: mdl-30950186

ABSTRACT

Crop evolution is a long-term process involving selection by natural evolutionary forces and anthropogenic influences; however, the genetic mechanisms underlying the domestication and improvement of fruit crops have not been well studied to date. Here, we performed a population structure analysis in peach (Prunus persica) based on the genome-wide resequencing of 418 accessions and confirmed the presence of an obvious domestication event during evolution. We identified 132 and 106 selective sweeps associated with domestication and improvement, respectively. Analysis of their tissue-specific expression patterns indicated that the up-regulation of selection genes during domestication occurred mostly in fruit and seeds as opposed to other organs. However, during the improvement stage, more up-regulated selection genes were identified in leaves and seeds than in the other organs. Genome-wide association studies (GWAS) using 4.24 million single nucleotide polymorphisms (SNPs) revealed 171 loci associated with 26 fruit domestication traits. Among these loci, three candidate genes were highly associated with fruit weight and the sorbitol and catechin content in fruit. We demonstrated that as the allele frequency of the SNPs associated with high polyphenol composition decreased during peach evolution, alleles associated with high sugar content increased significantly. This indicates that there is genetic potential for the breeding of more nutritious fruit with enhanced bioactive polyphenols without disturbing a harmonious sugar and acid balance by crossing with wild species. This study also describes the development of the genomic resources necessary for evolutionary research in peach and provides the large-scale characterization of key agronomic traits in this crop species.


Subject(s)
Domestication , Metagenomics , Prunus persica/genetics , Evolution, Molecular , Fruit , Genetic Association Studies , Genome, Plant , Phylogeny , Polymorphism, Single Nucleotide
17.
Genome Biol ; 20(1): 36, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30791928

ABSTRACT

BACKGROUND: Human selection has a long history of transforming crop genomes. Peach (Prunus persica) has undergone more than 5000 years of domestication that led to remarkable changes in a series of agronomically important traits, but genetic bases underlying these changes and the effects of artificial selection on genomic diversity are not well understood. RESULTS: Here, we report a comprehensive analysis of peach evolution based on genome sequences of 480 wild and cultivated accessions. By focusing on a set of quantitative trait loci (QTLs), we provide evidence supporting that distinct phases of domestication and improvement have led to an increase in fruit size and taste and extended its geographic distribution. Fruit size was predominantly selected during domestication, and selection for large fruits has led to the loss of genetic diversity in several fruit weight QTLs. In contrast, fruit taste-related QTLs were successively selected for by domestication and improvement, with more QTLs selected for during improvement. Genome-wide association studies of 11 agronomic traits suggest a set of candidate genes controlling these traits and potential markers for molecular breeding. Candidate loci for genes that contributed to the adaption to low-chill regions were identified. Furthermore, the genomic bases of divergent selection for fruit texture and local breeding for different flavors between Asian and European/North American cultivars were also determined. CONCLUSIONS: Our results elucidate the genetic basis of peach evolution and provide new resources for future genomics-guided peach breeding.


Subject(s)
Domestication , Genome, Plant , Plant Breeding , Prunus persica/genetics , Selection, Genetic , Cold Temperature , Fruit/genetics , Quantitative Trait Loci
18.
Plant Physiol Biochem ; 123: 94-102, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29227951

ABSTRACT

Peach is an important deciduous fruit tree species. Anthocyanins play an important role in fruit color formation and, through linkage analysis, previous studies have identified and mapped the key genes regulating anthocyanins' accumulation to chromosomes 3 and 5 in two different germplasms. To understand the overall regulatory network of anthocyanins biosynthesis, genes co-expressed with these key genes were identified in the red-fleshed 'Tianjin Shui Mi' and white-fleshed 'Hakuho' germplasms. Analysis of their flesh anthocyanin contents revealed differences 15 days before maturation. Therefore, transcriptome analysis of the flesh of fruits belonging to these two germplasms was performed to search for genes that were up-regulated at the late stage of development of 'Tianjin Shui Mi' but not of 'Hakuho', and identified 183 genes. These genes were also analyzed in the flesh transcriptomes of peach fruits belonging to 30 peach varieties with different anthocyanin contents at maturation, and the Pearson's correlation coefficients between their expression levels and anthocyanin contents were determined. The results showed that 66 genes were significantly correlated to anthocyanin contents, most of which previously reported as regulatory, biosynthetic, and transporter genes involved in anthocyanins' regulatory network. The results of this study enrich the understanding of key genes involved in the biological pathway regulating anthocyanins biosynthesis. The genes mostly associated with anthocyanins biosynthesis presented in this study are of great importance for molecular marker-assisted breeding.


Subject(s)
Anthocyanins , Gene Expression Profiling , Genes, Plant/physiology , Prunus persica , Anthocyanins/biosynthesis , Anthocyanins/genetics , Prunus persica/genetics , Prunus persica/metabolism
19.
Front Plant Sci ; 8: 2215, 2017.
Article in English | MEDLINE | ID: mdl-29354151

ABSTRACT

Fruit shape is an important external characteristic that consumers use to select preferred fruit cultivars. In peach, the flat fruit cultivars have become more and more popular worldwide. Genetic markers closely linking to the flat fruit trait have been identified and are useful for marker-assisted breeding. However, the cellular and genetic mechanisms underpinning flat fruit formation are still poorly understood. In this study, we have revealed the differences in fruit cell number, cell size, and in gene expression pattern between the traditional round fruit and modern flat fruit cultivars. Flat peach cultivars possessed significantly lower number of cells in the vertical axis because cell division in the vertical direction stopped early in the flat fruit cultivars at 15 DAFB (day after full bloom) than in round fruit cultivars at 35 DAFB. This resulted in the reduction in vertical development in the flat fruit. Significant linear relationship was observed between fruit vertical diameter and cell number in vertical axis for the four examined peach cultivars (R2 = 0.9964) at maturation stage, and was also observed between fruit vertical diameter and fruit weight (R2 = 0.9605), which indicated that cell number in vertical direction contributed to the flat shape formation. Furthermore, in RNA-seq analysis, 4165 differentially expressed genes (DEGs) were detected by comparing RNA-seq data between flat and round peach cultivars at different fruit development stages. In contrast to previous studies, we discovered 28 candidate genes potentially responsible for the flat shape formation, including 19 located in the mapping site and 9 downstream genes. Our study indicates that flat and round fruit shape in peach is primarily determined by the regulation of cell production in the vertical direction during early fruit development.

20.
Nat Commun ; 7: 13246, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27824331

ABSTRACT

Peach (Prunus persica L.) is a highly valuable crop species and is recognized by molecular researchers as a model fruit for the Rosaceae family. Using whole-genome sequencing data generated from 129 peach accessions, here we perform a comprehensive genome-wide association study for 12 key agronomic traits. We show that among the 10 qualitative traits investigated, nine exhibit consistent and more precise association signals than previously identified by linkage analysis. For two of the qualitative traits, we describe candidate genes, one potentially involved in cell death and another predicted to encode an auxin-efflux carrier, that are highly associated with fruit shape and non-acidity, respectively. Furthermore, we find that several genomic regions harbouring association signals for fruit weight and soluble solid content overlapped with predicted selective sweeps that occurred during peach domestication and improvement. Our findings contribute to the large-scale characterization of genes controlling agronomic traits in peach.


Subject(s)
Agriculture , Genome, Plant , Genome-Wide Association Study , Prunus persica/genetics , Quantitative Trait, Heritable , Domestication , Ecotype , Fruit/anatomy & histology , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...