Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(12): 5443-5453, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36930753

ABSTRACT

The detection of hydrogen sulfide (H2S), the third gas signaling molecule, is a promising strategy for identifying the occurrence of certain diseases. However, the conventional single- or dual-signal detection can introduce false-positive or false-negative results, which ultimately decreases the diagnostic accuracy. To address this limitation, we developed a luminescent, photothermal, and electrochemical triple-signal detection platform by optically trapping the synthetic highly doped upconversion coupled SiO2 microbeads coated with metal-organic frameworks H-UCNP-SiO2@HKUST-1 (H-USH) to detect the concentration of H2S. The H-USH was first synthesized and proved to have stable structure and excellent luminescent, photothermal, and electrochemical properties. Under 980 nm optical trapping and 808 nm irradiation, H-USH showed great detection linearity, a low limit of detection, and high specificity for H2S quantification via triple-signal detection. Moreover, H-USH was captured by optical tweezers to realize quantitative detection of H2S content in serum of acute pancreatitis and spontaneously hypertensive rats. Finally, by analyzing the receiver operating characteristic (ROC) curve, we concluded that triple-signal detection of H2S was more accurate than single- or dual-signal detection, which overcame the problem of false-negative/positive results in the detection of H2S in actual serum samples.


Subject(s)
Hydrogen Sulfide , Pancreatitis , Rats , Animals , Hydrogen Sulfide/chemistry , Luminescence , Electrochemistry , Acute Disease , Silicon Dioxide , Microspheres
2.
ACS Sens ; 7(5): 1572-1580, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35482449

ABSTRACT

Although great headway has been made in DNAzyme-based detection of Pb2+, its adaptability, sensitivity, and accessibility in complex media still need to be improved. For this, we introduce new ways to surmount these hurdles. First, a spherical nucleic acid (SNA) fluorescence probe (Au nanoparticles-DNAzyme probe) is utilized to specifically identify Pb2+ and its suitability for precise detection of Pb2+ in complex samples due to its excellent nuclease resistance. Second, the sensitivity of Pb2+ detection is greatly enhanced via the use of a clustered regularly interspaced short palindromic repeats-Cas12a with target recognition accuracy to amplify the fluorescent signal upon the trans cleavage of the SNA (signal probe), and the limit of detection reaches as low as 86 fM. Third, we boost the fluorescence on photonic crystal chips with a bionic periodic arrangement by employing a straightforward detection device (smartphone and portable UV lamp) to achieve on-site detection of Pb2+ with the limit of detection as low as 24 pM. Based on the abovementioned efforts, the modified Pb2+ fluorescence sensor has the advantages of higher sensitivity, better specificity, accessibility, less sample consumption, and so forth. Moreover, it can be applied to accurately detect Pb2+ in complex biological or environmental samples, which is of great promise for widespread applications.


Subject(s)
DNA, Catalytic , Metal Nanoparticles , CRISPR-Cas Systems , Gold , Lead
3.
Anal Chem ; 93(37): 12514-12523, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34490773

ABSTRACT

Despite that the currently discovered CRISPR-Cas12a system is beneficial for improving the detection accuracy and design flexibility of luminescent biosensors, there are still challenges to extend target species and strengthen adaptability in complicated biological media. To conquer these obstacles, we present here some useful strategies. For the former, the limitation to nucleic acids assay is broken through by introducing a simple functional DNA regulation pathway to activate the unique trans-cleavage effect of this CRISPR system, under which the expected biosensors are capable of effectively transducing a protein (employing dual aptamers) and a metal ion (employing DNAzyme). For the latter, a time-gated luminescence resonance energy transfer imaging manner using a long-persistent nanophosphor as the energy donor is performed to completely eliminate the background interference and a nature-inspired biomimetic periodic chip constructed by photonic crystals is further combined to enhance the persistent luminescence. In line with the above efforts, the improved CRISPR-Cas12a luminescent biosensor not only exhibits a sound analysis performance toward the model targets (carcinoembryonic antigen and Na+) but also owns a strong anti-interference feature to actualize accurate sensing in human plasma samples, offering a new and applicative analytical tool for laboratory medicine.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Biomimetics , CRISPR-Cas Systems/genetics , DNA/genetics , Humans , Luminescence
4.
Anal Chem ; 93(36): 12447-12455, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34449219

ABSTRACT

Alzheimer's disease (AD), known as a progressive neurodegenerative disorder, has had a terrible impact on the health of aged people. Due to its severity, early diagnosis of AD is significant to retard the progress and provide timely treatment. Here, we report a fluorescence ratio detection of AD biomarker amyloid ß oligomers (AßOs) by combining highly doped upconversion nanoparticles-SiO2@metal-organic framework/black hole quencher (H-USM/BHQ-1) microspheres with optical tweezer (OT) microscopic imaging. Optical trapping a single microsphere not only avoids the interference of fluid viscosity but also provides a high power density laser source to efficiently stimulate upconversion luminescence (UCL) of highly doped upconversion nanoparticles (H-UCNPs). Under this condition, H-UCNPs show stronger UCL and greater power-dependent properties compared to low-doped ones. Moreover, the closely packed quenching molecules BHQ-1 on a metal-organic framework (ZIF-8) exhibit excellent quenching efficiency for upconversion 525 and 540 nm emission. Also, the luminescent resonance energy transfer efficiency reaches 89.58%. When different concentrations of AßOs are present, the UCL540 recovers due to the decomposition of ZIF-8 and the release of BHQ-1. Using 540 and 654 nm emission ratio of highly doped UCNPs as reporters, the limit of detection reaches 28.4 pM for the quantitative determination of AßOs. Besides, this strategy is able to selectively quantify the AßO concentration. Therefore, we demonstrated the combination of optical trapping and highly doped UCNPs which is applied for the detection of AßOs with high sensitivity and specificity.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Aged , Amyloid beta-Peptides , Humans , Microspheres , Silicon Dioxide
5.
ACS Appl Mater Interfaces ; 13(27): 31485-31494, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34184527

ABSTRACT

Owing to their favorable design flexibility and eminent signal amplification ability, DNA nanomachine-supported biosensors have provided an attractive avenue for intracellular fluorescence imaging, especially for DNA walkers. However, this promising option not only suffers from poor controllability but also needs to be supplied with additional driving forces on account of the frequent employment of metal ion-dependent DNAzymes. Aiming at overcoming these obstacles, we introduce some fruitful solutions. On one hand, innovative light-activated walking behavior induced by a photocleavage mode is established on the surfaces of gold nanoparticles, and such a photoselective sensing system can be perfectly prevented from pre-activating during the intracellular delivery process and made to achieve target identification only under irradiation using a moderate ultraviolet light source. On the other hand, this light-switchable sensing frame is encapsulated within a dissociable metal-organic framework (ZIF-8) to facilitate endocytosis and ensure sufficient internal cofactors (Zn2+) to realize a self-driven pattern in the acidic environment of the cell lysosome. Based on the abovementioned efforts, the newly constructed autonomous three-dimensional DNA walkers present satisfactory sensitivity (a limit of detection of down to 19.4 pM) and specificity (even distinguishing single-base changes) toward a model biomarker (microRNA-21). More importantly, the sensing method allows determination of the variations in targets in living cancer cells with exceptional precision and efficiency, offering a powerful assay platform for intracellular imaging.


Subject(s)
DNA/chemistry , DNA/metabolism , Light , MicroRNAs/metabolism , Nanostructures/chemistry , Nanotechnology/methods , Optical Imaging/methods , Cell Survival , HeLa Cells , Humans , MCF-7 Cells , Metal-Organic Frameworks/chemistry
6.
Biosens Bioelectron ; 190: 113445, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34153827

ABSTRACT

Benefiting from the outstanding signal amplification effect and the admirable construction flexibility, the currently proposed DNA motors (particularly DNA walkers) based biosensing concepts have provided a forceful fluorescence imaging tool for intracellular detection. Even so, this promising sensing means is not only subject to poor controllability and prone to produce false signals but also requires exogenous powering forces owing to the common employment of DNAzyme. In response to these challenges, we are herein motivated to present some meaningful solving strategies. For one thing, the surfaces of gold nanoparticles are conducted with a photo-gated walking behavior by introducing a photocleave mode, under which the light-switchable DNA walkers are capable of being selectively activated via an external ultraviolet source to faultlessly prevent the sensing frame from being pre-initiated during cellular uptake and intracellular delivery. For another, the intracellular biothiols are consumed by MnO2 nanosheets to effectively avoid the competitions to Au-S bonds to eliminate potential false outputs and also self-supply sufficient cofactors (Mn2+) to actualize a self-powered operation pattern as well as facilitate the endocytosis process. Following these breakthroughs, a favorable analysis performance towards a model tumor biomarker (survivin mRNA) is endowed with the newly raised biosensor, whose sensitivity is low to pM level with a sound specificity for identifying single base mismatching. Moreover, the significantly improved autonomous three-dimensional DNA walkers can be used to determine and dynamically trace the targets in live cancer cells with an exceptional precise and efficient manner, commendably impelling the sensing ability of DNA motors in biological specimens.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Metal Nanoparticles , MicroRNAs , DNA/genetics , Gold , Manganese Compounds , Oxides , RNA, Messenger/genetics , Survivin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...