Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(22): 32649-32658, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31684473

ABSTRACT

We propose and experimentally demonstrate an ytterbium-doped fiber laser emitting the single high-order cylindrical vector beams with a high efficiency and a high modal purity based on adaptive modal gain control. By the combination of a high-order pump with a self-designed ytterbium-ring doped fiber, modal dependent gain was tailored and specific transverse mode can be selected in the laser cavity. A model based on multimode propagation-rate equations is built up to demonstrate the behaviors of transverse mode competition in the fiber laser. Modal dependent gain of high-order mode pump are simulated numerically, which agree well with our experiment results. The slope efficiency of the fiber laser reaches 79.61% with a low threshold of 47.73mw. The purity of the generated high-order CVBs are in excess of 95%. Such a strategy enables the controllability of modal gain in a fiber laser and reveals the potential to offer a new and promising way to achieve a high-power fiber laser with an arbitrary single high-order transverse modes output.

2.
Opt Express ; 26(22): 28429-28440, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30470014

ABSTRACT

Silicon-on-chip photonic circuits are among some very promising platforms for generating nonclassical photonic quantum state, because of its low loss, small footprint, and compatibility with complementary metal-oxide-semiconductor (CMOS) and telecommunications techniques. Dense wavelength division multiplexing (DWDM) is a leading technique for enhancing the transmission capacity of both classical and quantum communications. To bridge the frequency gap between silicon-chip and other quantum systems, such as quantum memories, a quantum interface is indispensable. Here, we demonstrate a quantum interface for multiplexed energy-time entanglement states, which are generated on a silicon micro-ring cavity that is based on frequency up-conversion. By switching the pump wavelength, energy-time entanglement from any channel can be selected at will after being up-converted. The high visibilities of two-photon interference over three channels after frequency up-conversion clearly prove that the entanglement is fully preserved during the quantum frequency conversion (QFC) process. Our work provides new perspectives regarding channel capacity enhancement in quantum communications and for quantum resources being transferred between two different quantum systems.

3.
Opt Express ; 26(10): 12912-12921, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29801324

ABSTRACT

Optical quantum states based on entangled photons are the key resource in quantum-information science. The realization of multiplexed multiple entanglement are necessary for developing high-capacity quantum information process. Silicon-on-insulator (SOI) has recently become a leading platform for generating and processing of non-classical optical states. In this work, by combining the wavelength- and time-division multiplexing technologies, we demonstrate a multiplexing time-bin entangled photon pair source based on a silicon nanowire waveguide and distribute entangled photons into 3(time) × 14(wavelength) channels independently. The indistinguishability of photon pairs in each time channel is confirmed by a fourfold Hong-Ou-Mandal quantum interference. Our work paves a new and promising way to achieve a high capacity quantum communication and to generate a multiple-photon non-classical state.

SELECTION OF CITATIONS
SEARCH DETAIL
...