Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(6): e2307094, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064119

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease featuring an abnormal immune microenvironment and resultant accumulation of hydrogen ions (H+ ) produced by activated osteoclasts (OCs). Currently, clinic RA therapy can hardly achieve sustained or efficient therapeutic outcomes due to the failures in generating sufficient immune modulation and manipulating the accumulation of H+ that deteriorates bone damage. Herein, a highly effective immune modulatory nanocatalytic platform, nanoceria-loaded magnesium aluminum layered double hydroxide (LDH-CeO2 ), is proposed for enhanced immune modulation based on acid neutralization and metal ion inherent bioactivity. Specifically, the mild alkaline LDH initiates significant M2 repolarization of macrophages triggered by the elevated antioxidation effect of CeO2 via neutralizing excessive H+ in RA microenvironment, thus resulting in the efficient recruitment of regulatory T cell (Treg) and suppressions on T helper 17 cell (Th 17) and plasma cells. Moreover, the osteogenic activity is stimulated by the Mg ion released from LDH, thereby promoting the damaged bone healing. The encouraging therapeutic outcomes in adjuvant-induced RA model mice demonstrate the high feasibility of such a therapeutic concept, which provides a novel and efficient RA therapeutic modality by the immune modulatory and bone-repairing effects of inorganic nanocatalytic material.


Subject(s)
Arthritis, Rheumatoid , Mice , Animals , Arthritis, Rheumatoid/drug therapy , Bone and Bones , Macrophages , Osteogenesis , Hydroxides
2.
J Am Chem Soc ; 145(44): 24153-24165, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37897426

ABSTRACT

Cancer stem cells (CSCs) within protumorigenic microlesions are a critical driver in the initiation and progression of early stage lung cancer, where immune cells provide an immunosuppressive niche to strengthen the CSC stemness. As the mutual interactions between CSCs and immune cells are increasingly recognized, regulating the immune cells to identify and effectively eliminate CSCs has recently become one of the most attractive therapeutic options, especially for abundant tumor-associated macrophages (TAMs). Herein, we developed a nebulized nanocatalytic medicine strategy in which iron-based nanoparticle-regulated TAMs effectively target CSC niches and trigger CSC ferroptosis in the early stage of lung cancer. Briefly, the iron-based nanoparticles can effectively accumulate in lung cancer microlesions (minimum 122 µm in diameter) through dextran-mediated TAM targeting by nebulization administration, and as a result, nanoparticle-internalized TAMs can play a predominant role of the iron factory in elevating the iron level surrounding CSC niches and destroying redox equilibrium through downregulating glucose-6-phosphate metabolite following their lysosomal degradation and iron metabolism. The altered microenvironment results in the enhanced sensitivity of CSCs to ferroptosis due to their high expression of the CD44 receptor mediating iron endocytosis. In an orthotopic mouse model of lung cancer, the initiation and progression of early lung cancer are significantly suppressed through ferroptosis-induced stemness reduction of CSCs by nebulization administration. This work presents a nebulized therapeutic strategy for early lung cancer through modulation of communications between TAMs and CSCs, which is expected to be a general approach for regulating primary microlesions and micrometastatic niches of lung cancer.


Subject(s)
Ferroptosis , Lung Neoplasms , Mice , Animals , Lung Neoplasms/pathology , Macrophages/metabolism , Neoplastic Stem Cells , Tumor Microenvironment
3.
ACS Nano ; 17(12): 11384-11395, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37288703

ABSTRACT

Pancreatic cancer, with extremely limited treatment options and poor prognosis, urgently needs a breakthrough in early diagnosis and monitoring. Tumor exosomes (T-Exos) detection is presently one of the most clinically significant liquid biopsy approaches for non-invasive pancreatic cancer early diagnosis, which, unfortunately, cannot be applied as a routine diagnostic tool until a number of obstacles, such as unsatisfactory specificity and sensitivity, as well as labor-intensive purification and analysis procedures by ultracentrifugation and enzyme-linked immunosorbent assay, are overcome. Here, we report a facile nanoliquid biopsy assay for the especially specific, ultrasensitive yet economical T-Exos detection by a dual specific biomarker antigen co-recognition and capturing strategy, which is enabled by grafting two corresponding capture antibodies on magnetic nanoparticles and gold nanoparticles, for the accurate detection of target tumor exosomes. This approach exhibits excellent specificity and ultrahigh sensitivity of detecting as low as 78 pg/mL pancreatic cancer exosome specific protein GPC1. Successful screening of 21 pancreatic cancer samples from 22 normal control cases with the enhanced specificity and sensitivity ensures the promising non-invasive monitoring and diagnosis for early stage pancreatic cancer.


Subject(s)
Exosomes , Metal Nanoparticles , Pancreatic Neoplasms , Humans , Biomarkers, Tumor/metabolism , Exosomes/metabolism , Gold/metabolism , Pancreatic Neoplasms/pathology , Early Detection of Cancer , Biopsy , Pancreatic Neoplasms
4.
Adv Healthc Mater ; 11(17): e2200031, 2022 09.
Article in English | MEDLINE | ID: mdl-35678310

ABSTRACT

Developing efficient and highly sensitive diagnostic techniques for early detections of pathogenic viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is vitally important for preventing its widespread. However, the conventional polymerase chain reaction (PCR)-based detection features high complexity, excessive time-consumption, and labor-intensiveness, while viral protein-based detections suffer from moderate sensitivity and specificity. Here, a non-PCR but ultrasensitive viral RNA detection strategy is reported based on a facile nanoprobe-coupling strategy without enzymatic amplification, wherein PCR-induced bias and other shortcomings are successfully circumvented. This approach endows the viral RNA detection with ultra-low background to maximum signal ratio in the linear signal amplification by using Au nanoparticles as reporters. The present strategy exhibits 100% specificity toward SARS-CoV-2 N gene, and ultrasensitive detection of as low as 52 cp mL-1 of SARS-CoV-2 N gene without pre-PCR amplification. This approach presents a novel ultrasensitive tool for viral RNA detections for fighting against COVID-19 and other types of pathogenic virus-caused diseases.


Subject(s)
COVID-19 , Metal Nanoparticles , COVID-19/diagnosis , COVID-19 Testing , Gold , Humans , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
Mol Med Rep ; 23(5)2021 05.
Article in English | MEDLINE | ID: mdl-33760170

ABSTRACT

Diabetic nephropathy (DN) is a common chronic complication of diabetes, for which acute glucose fluctuation (AGF) is a potential risk factor. Fluctuating hyperglycemia has been confirmed to induce more serious kidney damage than hyperglycemia in diabetic rats; however, the mechanism remains unknown. The purpose of this study was to explore the potential role of AGF in the progression of DN. Viability of rat podocytes following 72­h AGF treatment was detected using Cell Counting­Kit­8. The rates of apoptosis and the level of reactive oxygen species (ROS) in rat podocytes were assessed by flow cytometry. Western blotting and reverse transcription­quantitative PCR were performed to measure relative protein and mRNA expression levels, respectively. Transfection with an mRFP­GFP­LC3 adenoviral vector was used to track autophagic flux under confocal microscopy. The results indicated that AGF could inhibit cell proliferation, promote TNF­α, interleukin­1ß (IL­1ß), and reactive oxygen species (ROS) generation, and increase autophagy in rat podocytes. Moreover, AGF upregulated receptor for advanced glycation end products (RAGE) expression via activation of NF­κB/p65 and IκBα. Pretreatment with 5 mM N­Acetyl­L­cysteine or 10 µM pyrrolidine dithiocarbamate effectively reduced cellular damage and inhibited activation of the NF­κB/RAGE signaling pathway. Thus, AGF induces rat podocyte injury by aggravating oxidative stress, promoting the inflammatory response, and regulating ROS­mediated NF­κB/RAGE activation.


Subject(s)
Diabetes Mellitus, Experimental/genetics , Diabetic Nephropathies/genetics , Glucose/metabolism , Hyperglycemia/genetics , Receptor for Advanced Glycation End Products/genetics , Animals , Apoptosis/genetics , Autophagy/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Gene Expression Regulation , Glycation End Products, Advanced/genetics , Humans , Hyperglycemia/metabolism , Hyperglycemia/pathology , NF-kappa B/genetics , Oxidative Stress/genetics , Podocytes/metabolism , Rats , Reactive Oxygen Species/metabolism
6.
Med Sci Monit ; 25: 8472-8481, 2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31707400

ABSTRACT

BACKGROUND Cardiac dysfunction during endotoxemia is a major cause of cardiovascular disease with high morbidity and mortality. Alisol B 23-acetate (AB23A) is a triterpenoid extracted from the Rhizoma Alismatis, a kind of traditional Chinese medicine, exhibits anti-inflammatory activity on endotoxemia. This investigation aimed to uncover the protective effects of AB23A against sepsis-induced cardiac dysfunction. MATERIAL AND METHODS Adult male C57BL/6 mice received lipopolysaccharide (LPS) (20 mg/kg intravenous) stimulation, with or without pre-treatment of AB23A (10 mg/kg, 20 mg/kg, or 40 mg/kg). Histopathological staining and cardiac function were performed 4 hours after LPS stimulation. Then the levels of interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-alpha were monitored with enzyme-linked immunosorbent assay (ELISA). In addition, H9C2 cells were treated with LPS (5 µg/mL) with or without pre-treated with AB23A (0.1 µM, 1 µM, or 10 µM), and the production of reactive oxygen species (ROS) was detected by DCFH-DA combined with flow cytometry. The expression of Toll-like receptor 4 (TLR4), NADPH oxidase 2 (NOX2), NOX4, P38, p-P38, extracellular-signal-regulated kinase (ERK), and p-ERK were assessed by western blotting. RESULTS AB23A improved the survival rate and ameliorated myocardial injury, decreased inflammatory infiltration and the level of IL-6, IL-1ß, and TNF-alpha in the LPS-stimulated mouse model. Moreover, AB23A inhibited the ROS production in LPS-treated H9C2 cells. In addition, AB23A suppressed the levels of TLR4 and NOX2 as well as the activation levels of P38 and ERK both in vivo and in vitro. CONCLUSIONS AB23A reduced LPS-induced myocardial dysfunction by inhibiting inflammation and ROS production through the TLR4/NOX2 pathway.


Subject(s)
Cholestenones/pharmacology , Endotoxemia/drug therapy , Heart Diseases/drug therapy , Animals , China , Drugs, Chinese Herbal/pharmacology , Heart Diseases/chemically induced , Heart Diseases/physiopathology , Inflammation , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Male , Medicine, Chinese Traditional/methods , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/metabolism , NADPH Oxidase 2/metabolism , NADPH Oxidases/metabolism , Phosphorylation , Reactive Oxygen Species/metabolism , Sepsis , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Triterpenes/pharmacology , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...