Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(43): e202210970, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36050600

ABSTRACT

Defects at the interfaces of perovskite (PVK) thin films are the main factors responsible for instability and low photoelectric conversion efficiency (PCE) of PVK solar cells (PSCs). Here, a SnO2 -MXene composite electron transport layer (ETL) is used in PSCs to improve interfacial contact and passivate defects at the SnO2 /perovskite interface. The introduced MXene regulates SnO2 dispersion and induces a vertical growth of PVK. The lattice matching of MXene and perovskite suppresses the concentration of interfacial stress, thereby obtaining a perovskite film with low defects. Compared with SnO2 -based device, the PCE of SnO2 -MXene-based device is improved by 15 % and its short-circuit current is up to 25.07 mA cm-2 . Furthermore, unencapsulated device maintained about 90 % of its initial efficiency even after 500 h of storage at 30-40 % relative humidity in ambient air. The composite ETL strategy provides a route to engineer interfacial passivation between metal halide perovskites and ETLs.

2.
ACS Appl Mater Interfaces ; 12(26): 29242-29252, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32484322

ABSTRACT

Silicon is one of the most promising alternative active materials for next-generation lithium-ion battery (LIB) applications due to its advantage of high specific capacity. However, the enormous volume variations during lithiation/delithiation still remain to be an obstacle to commercialization. In this work, binder-free pure silicon and silicon/carbon (Si/C) multilayer thin-film electrodes, prepared by scalable one-step magnetron sputtering, are systematically investigated by an interlayer strategy. Herein, we present a rationally structural modification by an amorphous carbon film to enhance the electrical conductivity, mechanical integrity, and electrochemical performance of Si film-based LIBs. Therefore, to maintain the consistency of the direct-contact layer with the electrolyte and current collection, symmetrical Si/C/Si and Si/C/Si/C/Si/C/Si electrodes are deliberately designed to study the influence of embedded carbon. An anode with a carbon content of 10.38 wt % yields an initial discharge specific capacity of 1888.74 mAh g-1 and a capacity retention of 96.82% (1243.56 mAh g-1) after 150 cycles at a high current density of 4000 mA g-1. It also shows that the best rate capability remains 96.0% of the initial capacity in the 70th cycle. At last, three mechanisms are proposed for an in-depth understanding of the interface effect. This work offers a new perspective scheme toward Si/C-based LIBs with a capability of high rate and high energy density.

3.
RSC Adv ; 8(72): 41404-41414, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-35559326

ABSTRACT

The laminated construction of an a-Si-Ag thin film electrode is demonstrated, which allows stabilization of the cycling performance of a silicon thin film layer in a lithium-ion battery. A silver thin film plays a determining role in the lithium insertion/extraction process and is incorporated between amorphous Si thin film layers (a-Si/Ag/a-Si), which results in not only high and stable capability, but also the best rate performance compared to that of other electrodes. For the electrode of a-Si/Ag/a-Si, a critical thickness of the silver layer (30 nm) is found; in this case, it exhibits the highest capacity retention of 70% after 200 cycles at a current density of 65.2 µA cm-2 within the voltage range of 0.01-1.5 V. It is demonstrated that for the a-Si/Ag/a-Si (140/30/140 nm) electrode, enhanced capacity (∼59.1%) is derived from the buffer effect and excellent conductivity of silver layer. Silver interlayer may represent a universal platform for relieving stress in a silicon electrode. In addition, its excellent electrical conductivity will decrease the charge transfer resistance of Si electrode for lithium-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...