Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.131
Filter
1.
Article in English | MEDLINE | ID: mdl-38828990

ABSTRACT

Ion trajectory simulation is a significant and useful tool for understanding ion transfer mechanisms within the first vacuum region of the atmospheric pressure ionization mass spectrometer (API-MS). However, the complex dynamic gas field and wide pressure range lead to inaccurate simulation and huge computational costs. In this work, a novel electrohydrodynamic simulation called the statistical diffusion-hard-sphere (SDHS) mixed collision model was developed for characterizing the ion trajectories. For the first time, the influence of the dynamic pressure on the ion trajectory is considered for simulation, which helps to avoid an intolerable computational cost. Comparing with the conventional Monte Carlo collision model, the SDHS method helps to improve the calculation accuracy of ion trajectories under the first vacuum region and reduce the computational cost for at least 12-folds. Simulation results showed that the maximum ion loss came from the gap of the electrodes. The distance of the capillary-quadrupole ion guide was also a non-negligible factor. The trend of quantitative experimental results matches the SDHS simulation results. The maximum ion transfer efficiencies of quantitative experiment and simulation were 55% and 52%, respectively. Moreover, three ions, caffeine, reserpine, and Ultramark 1621, were measured for evaluating the applicability of SDHS in real API-MS. The trend of experimental results showed good agreement with that of computation. And the results of caffeine further illustrated the reason that the small mass ion transfer efficiency decreased with increasing radio frequency voltage. SDHS method is expected to be useful in the design of ion guides for further improvement of the sensitivity of API-MS.

2.
Br J Anaesth ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38839471

ABSTRACT

BACKGROUND: The comparative effectiveness of volatile anaesthesia and total intravenous anaesthesia (TIVA) in terms of patient outcomes after cardiac surgery remains a topic of debate. METHODS: Multicentre randomised trial in 16 tertiary hospitals in China. Adult patients undergoing elective cardiac surgery were randomised in a 1:1 ratio to receive volatile anaesthesia (sevoflurane or desflurane) or propofol-based TIVA. The primary outcome was a composite of predefined major complications during hospitalisation and mortality 30 days after surgery. RESULTS: Of the 3123 randomised patients, 3083 (98.7%; mean age 55 yr; 1419 [46.0%] women) were included in the modified intention-to-treat analysis. The composite primary outcome was met by a similar number of patients in both groups (volatile group: 517 of 1531 (33.8%) patients vs TIVA group: 515 of 1552 (33.2%) patients; relative risk 1.02 [0.92-1.12]; P=0.76; adjusted odds ratio 1.05 [0.90-1.22]; P=0.57). Secondary outcomes including 6-month and 1-yr mortality, duration of mechanical ventilation, length of ICU and hospital stay, and healthcare costs, were also similar for the two groups. CONCLUSIONS: Among adults undergoing cardiac surgery, we found no difference in the clinical effectiveness of volatile anaesthesia and propofol-based TIVA. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR-IOR-17013578).

3.
Heliyon ; 10(11): e31902, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845897

ABSTRACT

Urinary tract infection (UTI) is a well-known bacterial infection posing serious health problem in children. A retrospective study was conducted to explore the uropathogen and its antibiotic resistance in children with UTI. Data of urine culture and antimicrobial susceptibility test was collected. Consequently, 840 children were included. The overall culture-positive UTI was 458 (54.52 %) with Escherichia coli 166 (36.24 %), followed by Enterococcus faecalis 59 (12.88 %), Enterococcus faecium 70 (15.28 %) and others. They were highly resistant to the most commonly used antibiotics. In 694 children with complicated UTI, there were 8 children with fungal infection. Multiple drug resistance (MDR) was recorded in 315 (80.98 %). The overall proportion of Extended Spectrum ß-Lactamase (ESßL) production was 25 (6.43 %). In 146 children with simple UTI, MDR were also detected in 47 (77.05 %). There were 6 (9.84 %) positive for ESßL production. Our study found that complicated UTI was relatively common. Escherichia coli was the most prevalent isolate, followed by Enterococcus faecium and Enterococcus faecalis. These organisms were highly resistant to the most commonly used antibiotics. Relatively high prevalence of MDR and low ESßL-producing organisms were observed.

5.
Eur Spine J ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713446

ABSTRACT

OBJECTIVE: To investigate the external validation and scalability of four predictive models regarding new vertebral fractures following percutaneous vertebroplasty. METHODS: Utilizing retrospective data acquired from two centers, compute the area under the curve (AUC), calibration curve, and Kaplan-Meier plot to assess the model's discrimination and calibration. RESULTS: In the external validation of Zhong et al.'s 2015 predictive model for the probability of new fractures post-vertebroplasty, the AUC for re-fracture at 1, 2, and 3 years postoperatively was 0.570, 0.617, and 0.664, respectively. The AUC for Zhong et al.'s 2016 predictive model for the probability of new fractures in neighboring vertebrae was 0.738. Kaplan-Meier plot results for both models indicated a significantly lower incidence of re-fracture in low-risk patients compared to high-risk patients. Li et al.'s 2021 model had an AUC of 0.518, and its calibration curve suggested an overestimation of the probability of new fractures. Li et al.'s 2022 model had an AUC of 0.556, and its calibration curve suggested an underestimation of the probability of new fractures. CONCLUSION: The external validation of four models demonstrated that the predictive model proposed by Zhong et al. in 2016 exhibited superior external generalization capabilities.

6.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38557674

ABSTRACT

Quality control in quantitative proteomics is a persistent challenge, particularly in identifying and managing outliers. Unsupervised learning models, which rely on data structure rather than predefined labels, offer potential solutions. However, without clear labels, their effectiveness might be compromised. Single models are susceptible to the randomness of parameters and initialization, which can result in a high rate of false positives. Ensemble models, on the other hand, have shown capabilities in effectively mitigating the impacts of such randomness and assisting in accurately detecting true outliers. Therefore, we introduced SEAOP, a Python toolbox that utilizes an ensemble mechanism by integrating multi-round data management and a statistics-based decision pipeline with multiple models. Specifically, SEAOP uses multi-round resampling to create diverse sub-data spaces and employs outlier detection methods to identify candidate outliers in each space. Candidates are then aggregated as confirmed outliers via a chi-square test, adhering to a 95% confidence level, to ensure the precision of the unsupervised approaches. Additionally, SEAOP introduces a visualization strategy, specifically designed to intuitively and effectively display the distribution of both outlier and non-outlier samples. Optimal hyperparameter models of SEAOP for outlier detection were identified by using a gradient-simulated standard dataset and Mann-Kendall trend test. The performance of the SEAOP toolbox was evaluated using three experimental datasets, confirming its reliability and accuracy in handling quantitative proteomics.


Subject(s)
Data Management , Proteomics , Reproducibility of Results , Quality Control , Data Interpretation, Statistical
7.
J Food Sci ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38638065

ABSTRACT

Lactobacillus fermentum can exert antiaging effects, but their roles are strain-specific, and little is known about the molecular mechanisms in some strains. This study investigated the antiaging effects of L. fermentum WC2020 (WC2020) isolated from Chinese fermented pickles and the underlying mechanism of the action in Caenorhabditis elegans. WC2020 enhanced the mean lifespan of L1-stage and L4-stage worms by 22.67% and 12.42%, respectively, compared with Escherichia coli OP50 (OP50), a standard food source for C. elegans. WC2020-induced longevity was accompanied by an increase in body length and mitochondrial transmembrane potential and a reduction in lipid accumulation and the production of reactive oxygen species and malondialdehyde. Moreover, WC2020 increased the production of glutathione, superoxide dismutases, and catalases and altered the transcripts of many phenotype-related genes. Furthermore, WC2020-fed jnk-1 rather than akt-2 or pmk-1 loss-of-function mutants showed similar lifespans to OP50-fed worms. Correspondingly, WC2020 significantly upregulated the expression of jnk-1 rather than genes involved in insulin-like, p38 MAPK, bate-catenin, or TGF-beta pathway. Moreover, the increase in body length, mitochondrial transmembrane potential, and antioxidant capability and the decrease in lipid accumulation induced by WC2020 were not observed in jnk-1 mutants. Additionally, WC2020 increased the expression of daf-16 and the proportion of daf-16::GFP in the nucleus, and increased lifespan disappeared in WC2020-fed daf-16 loss-of-function mutants. In conclusion, WC2020 activated the JNK/DAF-16 pathway to improve mitochondria function, reduce oxidative stress, and then extend the longevity of nematodes, suggesting WC2020 could be a potential probiotic targeting JNK-mediated antioxidant pathway for antiaging in food supplements and bioprocessing. PRACTICAL APPLICATION: Aging has a profound impact on the global economy and human health and could be delayed by specific diets and nutrient resources. This study demonstrated that Lactobacillus fermentum WC2020 could be a potential probiotic strain used in food to promote longevity and health via the JNK-mediated antioxidant pathway.

8.
World J Stem Cells ; 16(3): 245-256, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38577237

ABSTRACT

Mesenchymal stem cells (MSCs) are stem/progenitor cells capable of self-renewal and differentiation into osteoblasts, chondrocytes and adipocytes. The transformation of multipotent MSCs to adipocytes mainly involves two subsequent steps from MSCs to preadipocytes and further preadipocytes into adipocytes, in which the process MSCs are precisely controlled to commit to the adipogenic lineage and then mature into adipocytes. Previous studies have shown that the master transcription factors C/enhancer-binding protein alpha and peroxisome proliferation activator receptor gamma play vital roles in adipogenesis. However, the mechanism underlying the adipogenic differentiation of MSCs is not fully understood. Here, the current knowledge of adipogenic differentiation in MSCs is reviewed, focusing on signaling pathways, noncoding RNAs and epigenetic effects on DNA methylation and acetylation during MSC differentiation. Finally, the relationship between maladipogenic differentiation and diseases is briefly discussed. We hope that this review can broaden and deepen our understanding of how MSCs turn into adipocytes.

9.
Interdiscip Sci ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573456

ABSTRACT

Autism Spectrum Disorder (ASD) is defined as a neurodevelopmental condition distinguished by unconventional neural activities. Early intervention is key to managing the progress of ASD, and current research primarily focuses on the use of structural magnetic resonance imaging (sMRI) or resting-state functional magnetic resonance imaging (rs-fMRI) for diagnosis. Moreover, the use of autoencoders for disease classification has not been sufficiently explored. In this study, we introduce a new framework based on autoencoder, the Deep Canonical Correlation Fusion algorithm based on Denoising Autoencoder (DCCF-DAE), which proves to be effective in handling high-dimensional data. This framework involves efficient feature extraction from different types of data with an advanced autoencoder, followed by the fusion of these features through the DCCF model. Then we utilize the fused features for disease classification. DCCF integrates functional and structural data to help accurately diagnose ASD and identify critical Regions of Interest (ROIs) in disease mechanisms. We compare the proposed framework with other methods by the Autism Brain Imaging Data Exchange (ABIDE) database and the results demonstrate its outstanding performance in ASD diagnosis. The superiority of DCCF-DAE highlights its potential as a crucial tool for early ASD diagnosis and monitoring.

10.
J Exp Clin Cancer Res ; 43(1): 116, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637831

ABSTRACT

BACKGROUND: Protein arginine methyltransferase 6 (PRMT6) plays a crucial role in various pathophysiological processes and diseases. Glioblastoma (GBM; WHO Grade 4 glioma) is the most common and lethal primary brain tumor in adults, with a prognosis that is extremely poor, despite being less common than other systemic malignancies. Our current research finds PRMT6 upregulated in GBM, enhancing tumor malignancy. Yet, the specifics of PRMT6's regulatory processes and potential molecular mechanisms in GBM remain largely unexplored. METHODS: PRMT6's expression and prognostic significance in GBM were assessed using glioma public databases, immunohistochemistry (IHC), and immunoblotting. Scratch and Transwell assays examined GBM cell migration and invasion. Immunoblotting evaluated the expression of epithelial-mesenchymal transition (EMT) and Wnt-ß-catenin pathway-related proteins. Dual-luciferase reporter assays and ChIP-qPCR assessed the regulatory relationship between PRMT6 and YTHDF2. An in situ tumor model in nude mice evaluated in vivo conditions. RESULTS: Bioinformatics analysis indicates high expression of PRMT6 and YTHDF2 in GBM, correlating with poor prognosis. Functional experiments show PRMT6 and YTHDF2 promote GBM migration, invasion, and EMT. Mechanistic experiments reveal PRMT6 and CDK9 co-regulate YTHDF2 expression. YTHDF2 binds and promotes the degradation of negative regulators APC and GSK3ß mRNA of the Wnt-ß-catenin pathway, activating it and consequently enhancing GBM malignancy. CONCLUSIONS: Our results demonstrate the PRMT6-YTHDF2-Wnt-ß-Catenin axis promotes GBM migration, invasion, and EMT in vitro and in vivo, potentially serving as a therapeutic target for GBM.


Subject(s)
Glioblastoma , Glioma , Animals , Mice , Glioblastoma/pathology , beta Catenin/genetics , beta Catenin/metabolism , Transcriptional Activation , Mice, Nude , Cell Line, Tumor , Transcription Factors/metabolism , Glioma/pathology , Wnt Signaling Pathway , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation/genetics , Cell Movement , Gene Expression Regulation, Neoplastic
11.
Funct Plant Biol ; 512024 04.
Article in English | MEDLINE | ID: mdl-38669463

ABSTRACT

Plants regularly encounter various environmental stresses such as salt, drought, cold, heat, heavy metals and pathogens, leading to changes in their proteome. Of these, a post-translational modification, SUMOylation is particularly significant for its extensive involvement in regulating various plant molecular processes to counteract these external stressors. Small ubiquitin-like modifiers (SUMO) protein modification significantly contributes to various plant functions, encompassing growth, development and response to environmental stresses. The SUMO system has a limited number of ligases even in fully sequenced plant genomes but SUMO E3 ligases are pivotal in recognising substrates during the process of SUMOylation. E3 ligases play pivotal roles in numerous biological and developmental processes in plants, including DNA repair, photomorphogenesis, phytohormone signalling and responses to abiotic and biotic stress. A considerable number of targets for E3 ligases are proteins implicated in reactions to abiotic and biotic stressors. This review sheds light on how plants respond to environmental stresses by focusing on recent findings on the role of SUMO E3 ligases, contributing to a better understanding of how plants react at a molecular level to such stressors.


Subject(s)
Stress, Physiological , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Plants/enzymology , Plants/metabolism , Sumoylation , Plant Proteins/metabolism , Plant Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism
12.
Materials (Basel) ; 17(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38673206

ABSTRACT

The deteriorated plasticity arising from the insoluble precipitates may lead to cracks during the rolling of FeCrAl alloys. The microstructure evolution and hot deformation behavior of an FeCrAl alloy were investigated in the temperature range of 750-1200 °C and strain rate range of 0.01-10 s-1. The flow stress of the FeCrAl alloy decreased with an increasing deformation temperature and decreased strain rate during hot working. The thermal deformation activation energy was determined to be 329.49 kJ/mol based on the compression test. Then, the optimal hot working range was given based on the established hot processing maps. The hot processing map revealed four small instability zones. The optimal working range for the material was identified as follows: at a true strain of 0.69, the deformation temperature should be 1050-1200 °C, and the strain rate should be 0.01-0.4 s-1. The observation of key samples of thermally simulated compression showed that discontinuous dynamic recrystallization started to occur with the temperate above 1000 °C, leading to bended grain boundaries. When the temperature was increased to 1150 °C, the dynamic recrystallization resulted in a microstructure composed of fine and equiaxed grains.

13.
Orthop Surg ; 16(6): 1292-1299, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38644512

ABSTRACT

OBJECTIVES: There is still controversy over the choice of treatment for end-stage spinal metastases. With the continuous development of microwave technology in spinal tumors, related studies have reported that microwave combined with techniques such as pedicle screw fixation and percutaneous vertebroplasty can achieve the purpose of tumor ablation, relieving spinal cord compression, enhancing spinal stability, effectively relieving pain, and reducing recurrence rates. This study aimed to analyze the effectiveness of microwave ablation combined with decompression and pedicle screw fixation in the palliative management of spinal metastases with pathological fractures. METHODS: This retrospective study enrolled 82 patients with spinal metastases and pathological fractures treated between January 2016 and July 2020, with 44 patients undergoing pedicle screw fixation along with laminectomy (fixation group) and the remaining 38 receiving microwave ablation in addition to the treatment provided to group fixation (MWA group). Before surgery, all patients underwent pain assessment using the visual analogue scale (VAS) and evaluation of spinal cord injury using the Frankel classification. After surgery, the patients' prognoses were assessed using the Tomita score, modified Tokuhashi score system, and progression-free survival. Additionally, we compared operative time and blood loss between the two groups. Survival analysis utilized the Kaplan-Meier method with a log-rank test for group comparisons. Paired t-tests and the Mann-Whitney U test were applied to metric and non-normally distributed data, respectively. Neurological function improvement across groups was evaluated using the χ2 test. RESULTS: All patients were followed up for a median duration of 18 and 20 months in the fixation and MWA groups, respectively, with follow-up periods ranging from 6 to 36 months. Statistically significant reductions in postoperative VAS scores were observed in all patients compared with their preoperative scores. The MWA group exhibited reduced blood loss (t = 2.74, p = 0.01), lower VAS scores at the 1- and 3-month follow-ups (t = 2.34, P = 0.02; t = 2.83, p = 0.006), and longer progression-free survival than the fixation group (p = 0.03). Although the operation times in the MWA group were longer than those in the fixation group, this difference was not statistically significant (t = 6.06, p = 0.12). No statistically significant differences were found regarding improvements in spinal cord function between the two groups (p = 0.77). CONCLUSION: Compared with decompression and pedicle screw fixation for treating spinal metastases with pathological fractures, microwave ablation combined with decompression and pedicle screw fixation showed better outcomes in terms of pain control, longer progression-free survival, and lower blood loss without increasing operative time, which has favorable implications for clinical practice.


Subject(s)
Decompression, Surgical , Microwaves , Pedicle Screws , Spinal Neoplasms , Humans , Spinal Neoplasms/secondary , Spinal Neoplasms/surgery , Male , Female , Retrospective Studies , Middle Aged , Microwaves/therapeutic use , Decompression, Surgical/methods , Aged , Adult , Palliative Care/methods , Pain Measurement , Laminectomy/methods , Combined Modality Therapy , Ablation Techniques/methods
14.
Pathogens ; 13(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38535583

ABSTRACT

Alzheimer's Disease (AD), a progressive and debilitating condition, is reported to be the most common type of dementia, with at least 55 million people believed to be currently affected. Many causation hypotheses of AD exist, yet the intriguing link between viral infection and its possible contribution to the known etiology of AD has become an attractive focal point of research for the field and a challenging study task. In this review, we will explore the historical perspective and milestones that led the field to investigate the viral connection to AD. Specifically, several viruses such as Herpes Simplex Virus 1 (HSV-1), Zika virus (ZIKV), and severe cute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with several others mentioned, include the various viruses presently considered within the field. We delve into the strong evidence implicating these viruses in the development of AD such as the lytic replication and axonal transport of HSV-1, the various mechanisms of ZIKV neurotropism through the human protein Musashi-1 (MSI1), and the spread of SARS-CoV-2 through the transfer of the virus through the BBB endothelial cells to glial cells and then to neurons via transsynaptic transfer. We will also explore beyond these mere associations by carefully analyzing the potential mechanisms by which these viruses may contribute to AD pathology. This includes but is not limited to direct neuronal infections, the dysregulation of immune responses, and the impact on protein processing (Aß42 and hyperphosphorylated tau). Controversies and challenges of the virus-AD relationship emerge as we tease out these potential mechanisms. Looking forward, we emphasize future directions, such as distinct questions and proposed experimentations to explore, that the field should take to tackle the remaining unanswered questions and the glaring research gaps that persist. Overall, this review aims to provide a comprehensive survey of the past, present, and future of the potential link between viral infections and their association with AD development while encouraging further discussion.

15.
ACS Appl Mater Interfaces ; 16(12): 15251-15261, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38489474

ABSTRACT

Nowadays, the rapid development of electronic devices requires composites with high thermal conductivity and good electromagnetic shielding properties. The key challenge lies in the construction of high-performance conductive networks. Herein, an electrochemical expansion graphite foam (EEG) with a quasi-hyperbolic framework was prepared by an electrochemical expansion method, and then the epoxy resin (EP) was filled to fabricate the composites. The graphite plate was first electrochemically intercalated and then foamed, in which plasticization was caused by weak oxidation in intercalation and the quasi-hyperbolic framework was induced by foaming during expansion. These processes were characterized by Fourier transform infrared (FTIR), micro-Raman, X-ray photoelectron spectroscopy (XPS), and so on. Based on the highly efficient quasi-hyperbolic framework and high-quality graphite structure, the thermal conductivity of the composite reached 43.523 W/(m·K), and total electromagnetic interference (EMI) shielding (SET) reached 105 dB. The heat transfer behavior was simulated by finite element analysis (FEA) in detail. This method of preparing high thermal conductivity and electromagnetic shielding materials has a good application prospect.

16.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38517696

ABSTRACT

With the rapid development of single-molecule sequencing (SMS) technologies, the output read length is continuously increasing. Mapping such reads onto a reference genome is one of the most fundamental tasks in sequence analysis. Mapping sensitivity is becoming a major concern since high sensitivity can detect more aligned regions on the reference and obtain more aligned bases, which are useful for downstream analysis. In this study, we present pathMap, a novel k-mer graph-based mapper that is specifically designed for mapping SMS reads with high sensitivity. By viewing the alignment chain as a path containing as many anchors as possible in the matched k-mer graph, pathMap treats chaining as a path selection problem in the directed graph. pathMap iteratively searches the longest path in the remaining nodes; more candidate chains with high quality can be effectively detected and aligned. Compared to other state-of-the-art mapping methods such as minimap2 and Winnowmap2, experiment results on simulated and real-life datasets demonstrate that pathMap obtains the number of mapped chains at least 11.50% more than its closest competitor and increases the mapping sensitivity by 17.28% and 13.84% of bases over the next-best mapper for Pacific Biosciences and Oxford Nanopore sequencing data, respectively. In addition, pathMap is more robust to sequence errors and more sensitive to species- and strain-specific identification of pathogens using MinION reads.


Subject(s)
High-Throughput Nucleotide Sequencing , Nanopore Sequencing , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Genome , Software , Algorithms
17.
Food Funct ; 15(8): 3993-4009, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38516869

ABSTRACT

Frailty, a complex geriatric syndrome, significantly impedes the goal of achieving 'healthy aging'. Increasing evidence suggests a connection between gut microbiota, systemic inflammation, and disease. However, it remains to be determined whether interventions targeting the intestinal flora can effectively ameliorate frailty. Our research involved fecal microbiota transplantation (FMT) experiments on germ-free (GF) mice, dividing these mice into three groups: a group receiving transplants from healthy elderly individuals (HF group), a group of frailty patients (FF group), and the FF group supplemented with Lactobacillus plantarum BFS1243 (FFL group). Our findings indicated a significant shift in the gut microbiota of the FF group, in contrast to the HF group, characterized by decreased Akkermansia and increased Enterocloster, Parabacteroides, and Eisenbergiella. Concurrently, there was a reduction in amino acids and SCFAs, with BFS1243 partially mitigating these changes. The FF group exhibited an upregulation of inflammatory markers, including PGE2, CRP, and TNF-α, and a downregulation of irisin, all of which were moderated by BFS1243 treatment. Furthermore, BFS1243 improved intestinal barrier integrity and physical endurance in the FF mice. Correlation analysis revealed a negative association between SCFA-producing species and metabolites like lysine and butyric acid with pro-inflammatory factors. In conclusion, our study conclusively demonstrated that alterations in the gut microbiota of elderly individuals can lead to physical frailty, likely due to detrimental effects on the intestinal barrier and a pro-inflammatory state. These findings underscore the potential of gut microbiome modulation as a clinical strategy for treating frailty.


Subject(s)
Fecal Microbiota Transplantation , Frailty , Gastrointestinal Microbiome , Germ-Free Life , Lactobacillus plantarum , Animals , Mice , Frailty/therapy , Frailty/metabolism , Female , Humans , Probiotics/pharmacology , Disease Models, Animal , Mice, Inbred C57BL , Aged , Feces/microbiology
18.
World J Microbiol Biotechnol ; 40(4): 134, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38480613

ABSTRACT

Lignan, a beneficial constituent of Flaxseed (Linum usitatissimum L.) showed great interest in researchers because of its multiple functional properties. Nonetheless, a challenge arises due to the glycosidic structure of lignans, which the gut epithelium cannot readily absorb. Therefore, we screened 18 strains of Lactiplantibacillus plantarum, Lacticaseibacillus casei, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Pediococcus pentosaceus, Pediococcus acidilactici, and Enterococcus durans to remove glycosides from flaxseed lignan extract enzymatically. Among our findings, Lactiplantibacillus plantarum SCB0151 showed the highest activity of ß-glucosidase (8.91 ± 0.04 U/mL) and higher transformed efficiency of Secoisolariciresinol (SECO) (8.21 ± 0.13%). The conversion rate of Secoisolariciresinol diglucoside (SDG) and the generation rate of SECO was 58.30 ± 3.78% and 32.13 ± 2.78%, respectively, under the optimized conditions. According to the LC-HRMSMS analysis, SECO (68.55 ± 6.57 µM), Ferulic acid (FA) (32.12 ± 2.50 µM), and Coumaric acid (CA) (79.60 ± 6.21 µM) were identified in the biotransformation products (TP) of flaxseed lignan extract. Results revealed that the TP exhibited a more pronounced anti-inflammatory effect than the flaxseed lignan extract. SECO, FA, and CA demonstrated a more inhibitory effect on NO than that of SDG. The expression of iNOS and COX-2 was significantly suppressed by TP treatment in LPS-induced Raw264.7 cells. The secretion of IL-6, IL-2, and IL-1ß decreased by 87.09 ± 0.99%, 45.40 ± 0.87%, and 53.18 ± 0.83%, respectively, at 60 µg/mL of TP treatment. Given these data, the bioavailability of flaxseed lignan extract and its anti-inflammatory effect were significantly enhanced by Lactiplantibacillus plantarum SCB0151, which provided a novel approach to commercializing flaxseed lignan extract for functional food.


Subject(s)
Flax , Glucosides , Lignans , Flax/chemistry , Flax/metabolism , Fermentation , Lignans/pharmacology , Lignans/chemistry , Lignans/metabolism , Glycosides , Butylene Glycols/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology
20.
Anal Bioanal Chem ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507042

ABSTRACT

Metrology is the science of measurement and its applications, whereas biometrology is the science of biological measurement and its applications. Biometrology aims to achieve accuracy and consistency of biological measurements by focusing on the development of metrological traceability, biological reference measurement procedures, and reference materials. Irreproducibility of biological and multi-omics research results from different laboratories, platforms, and analysis methods is hampering the translation of research into clinical uses and can often be attributed to the lack of biologists' attention to the general principles of metrology. In this paper, the progresses of biometrology including metrology on nucleic acid, protein, and cell measurements and its impacts on the improvement of reliability and comparability in biological research are reviewed. Challenges in obtaining more reliable biological and multi-omics measurements due to the lack of primary reference measurement procedures and new standards for biological reference materials faced by biometrology are discussed. In the future, in addition to establishing reliable reference measurement procedures, developing reference materials from single or multiple parameters to multi-omics scale should be emphasized. Thinking in way of biometrology is warranted for facilitating the translation of high-throughput omics research into clinical practices.

SELECTION OF CITATIONS
SEARCH DETAIL
...