Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 314: 120246, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36152718

ABSTRACT

Inland freshwater ecosystems are of increasing concerns in global methane (CH4) budget in the atmosphere. Agricultural irrigation watersheds are a potential CH4 emission hotspot owing to the anthropogenic carbon and nutrients loading. However, large-scale spatial variations of CH4 concentrations and fluxes in agricultural catchments remain poorly understood, constraining an accurate regional estimate of CH4 budgets. Here, we examined the spatiotemporal variations of dissolved CH4 concentrations and fluxes from typical freshwater types (ditch, reservoir and river) within an agricultural irrigation watershed from Hongze catchment, which is subjected to intensive agricultural and rural activities in Eastern China. The dissolved CH4 concentrations and fluxes showed similar temporal variations among the three freshwater types, with the highest rates in summer and the lowest rates in winter. The total CH4 emission from this agricultural irrigation watershed was estimated to be 0.002 Gg CH4 yr-1, with annual mean CH4 concentration and flux of 0.12 µmol L-1 and 0.58 mg m-2 d-1, respectively. Diffusive CH4 fluxes varied in samples taken from different freshwater types, the annual mean CH4 fluxes for ditch, reservoir and river were 0.31 ± 0.06, 0.71 ± 0.13 and 0.72 ± 0.25 mg m-2 d-1, respectively. Among three freshwater types, the CH4 fluxes were the lowest in ditch, which was associated with the lowest responses of CH4 fluxes to water dissolved oxygen (DO), nitrate nitrogen (NO3--N) and sediment dissolved organic carbon (DOC) concentrations in ditch. In addition, water velocity and wind speed were significantly lower in ditch than in reservoir and river, suggesting that they also played important roles in explaining the spatial variability of dissolved CH4 concentrations and fluxes. These results highlighted a need for more field measurements with wider spatial coverage and finer frequency, which would further improve the reliability of flux estimates for assessing the contribution of agricultural watersheds to the regional and global CH4 budgets.


Subject(s)
Agricultural Irrigation , Ecosystem , Nitrates , Reproducibility of Results , Fresh Water , Methane/analysis , Carbon/analysis , Carbon Dioxide/analysis , Nitrogen , China , Water , Oxygen
2.
Glob Chang Biol ; 28(15): 4713-4725, 2022 08.
Article in English | MEDLINE | ID: mdl-35560967

ABSTRACT

Inland waters (rivers, reservoirs, lakes, ponds, streams) and estuaries are significant emitters of methane (CH4 ) and nitrous oxide (N2 O) to the atmosphere, while global estimates of these emissions have been hampered due to the lack of a worldwide comprehensive data set of CH4 and N2 O flux components. Here, we synthesize 2997 in-situ flux or concentration measurements of CH4 and N2 O from 277 peer-reviewed publications to estimate global CH4 and N2 O emissions from inland waters and estuaries. Inland waters including rivers, reservoirs, lakes, and streams together release 95.18 Tg CH4  year-1 (ebullition plus diffusion) and 1.48 Tg N2 O year-1 (diffusion) to the atmosphere, yielding an overall CO2 -equivalent emission total of 3.06 Pg CO2  year-1 . The estimate of CH4 and N2 O emissions represents roughly 60% of CO2 emissions (5.13 Pg CO2  year-1 ) from these four inland aquatic systems, among which lakes act as the largest emitter for both CH4 and N2 O. Ebullition showed as a dominant flux component of CH4 , contributing up to 62%-84% of total CH4 fluxes across all inland waters. Chamber-derived CH4 emission rates are significantly greater than those determined by diffusion model-based methods for commonly capturing of both diffusive and ebullitive fluxes. Water dissolved oxygen (DO) showed as a dominant factor among all variables to influence both CH4 (diffusive and ebullitive) and N2 O fluxes from inland waters. Our study reveals a major oversight in regional and global CH4 budgets from inland waters, caused by neglecting the dominant role of ebullition pathways in those emissions. The estimated indirect N2 O EF5 values suggest that a downward refinement is required in current IPCC default EF5 values for inland waters and estuaries. Our findings further indicate that a comprehensive understanding of the magnitude and patterns of CH4 and N2 O emissions from inland waters and estuaries is essential in defining the way of how these aquatic systems will shape our climate.


Subject(s)
Greenhouse Gases , Nitrous Oxide , Carbon Dioxide/analysis , Estuaries , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis
3.
Sci Total Environ ; 813: 151863, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34843757

ABSTRACT

Aquaculture ponds are of increasing worldwide concerns as critical sources of atmospheric methane (CH4) and nitrous oxide (N2O), but little is known about these gases emissions as affected by aquaculture species, stocking and water management in aquaculture ponds. Here, a two-year study was carried out to quantify CH4 and N2O emissions from freshwater crab and fish aquaculture ponds in subtropical China. We further explored how the microbial functional genes [CH4: mcrA and pmoA; N2O: archaeal and bacterial amoA (AOA + AOB), nirS, nirK, nosZ] may drive CH4 and N2O release in the crab aquaculture pond typically undergoing flooding-to-drainage alteration. Over the two-year period, annual CH4 and N2O fluxes averaged 0.95 mg m-2 h-1 and 20.94 µg m-2 h-1 in the fish aquaculture, and 0.78 mg m-2 h-1and 28.48 µg m-2 h-1 in the crab aquaculture, respectively. The direct N2O emission factors were estimated to be 0.77% and 0.36% of the total N input by feed or 1.59 g N2O-N kg-1 and 1.06 g N2O-N kg-1 aquaculture yield in the crab and fish ponds, respectively. Among three functional stocking areas, CH4 and N2O emissions were consistently the highest at the feeding area (FA) in the both aquaculture ponds, followed by at the undisturbed area (UA) and aerated area (AA). The shift in sediment soil moisture from waterlogging to drainage conditions significantly increased the abundance of AOB relative to AOA and pmoA, decreased those of denitrifying functional genes (nirS, nirK, nosZ) and mcrA, while did not alter the functional group ratio of nirS + nirK relative to nosZ. Our results highlight that a better understanding of CH4 and N2O emissions from aquaculture ponds requires taking into consideration of data sourced from more diverse aquaculture systems with different management patterns. In addition, a deep analysis of the microbial processes that drive CH4 and N2O production and consumption from aquaculture ponds remains to be addressed in future studies.


Subject(s)
Methane , Nitrous Oxide , Animals , Aquaculture , Fresh Water , Nitrous Oxide/analysis , Ponds , Soil , Water , Water Supply
4.
Chirality ; 31(8): 592-602, 2019 08.
Article in English | MEDLINE | ID: mdl-31197898

ABSTRACT

Using chiral BINOL-derived phosphoric acids (PA's) to activate substrates for enhanced reactivity is now regarded as a powerful strategy to control enantioselectivity in asymmetric synthesis. Generally, most substituents at the 3,3'-positions of BINOL PA's are aryl derivatives. These derivatives are pivotal in attaining high selectivity. PA's with alkyl substituents in these positions have rarely been reported. Herein, we introduced alkyl-based substituents at the 3,3'-position of PA's. These new potential catalysts, if applied in reactions, may allow altered noncovalent interactions (as opposed to the typical aryl substituents in these positions) with substrates used in chiral PA-catalyzed chemistry in the future.

5.
Angew Chem Int Ed Engl ; 57(34): 11004-11008, 2018 08 20.
Article in English | MEDLINE | ID: mdl-29968269

ABSTRACT

The direct enantioselective 1,4- and 1,8-arylations of 7-methide-7H-indoles and 6-methide-6H-indoles, respectively, generated in situ from diarylmethanols, with electron-rich arenes as nucleophiles, has been achieved in the presence of chiral phosphoric acids (CPAs). These two remote activation protocols provide an efficient approach for the construction of diverse hetero-triarylmethanes in high yields (up to 97 %) and with excellent enantioselectivities (up to 96 %). Mechanistically inspired experiments tentatively indicate that the catalytic enantioselective 1,4-addition as well as the formal SN 1 substitution could proceed efficiently in the similar catalytic systems. Furthermore, the modification of the catalytic system and diarylmethanol structure successfully deviates the reactivity toward a remote, highly enantioselective 1,8-arylation reaction. This flexible activation mode and novel reactivity of diarylmethanols expand the synthetic potential of chiral phosphoric acids.

6.
J Bacteriol ; 197(14): 2325-34, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25917915

ABSTRACT

UNLABELLED: Polyamines are found in all groups of cyanobacteria, but their role in environmental adaptation has been barely investigated. In Synechocystis sp. strain PCC 6803, inactivation of spermidine synthesis genes significantly reduced the survivability under chill (5°C)-light stress, and the survivability could be restored by addition of spermidine. To analyze the effects of spermidine on gene expression at 5°C, lacZ was expressed from the promoter of carboxy(nor)spermidine decarboxylase gene (CASDC) in Synechocystis. Synechocystis 6803::PCASDC-lacZ pretreated at 15°C showed a high level of LacZ activity for a long period of time at 5°C; without the pretreatment or with protein synthesis inhibited at 5°C, the enzyme activity gradually decreased. In a spermidine-minus mutant harboring PCASDC-lacZ, lacZ showed an expression pattern as if protein synthesis were inhibited at 5°C, even though the stability of its mRNA increased. Four other genes, including rpoA that encodes the α subunit of RNA polymerase, showed similar expression patterns. The chill-light stress led to a rapid increase of protein carbonylation in Synechocystis. The protein carbonylation then quickly returned to the background level in the wild type but continued to slowly increase in the spermidine-minus mutant. Our results indicate that spermidine promotes gene expression and replacement of damaged proteins in cyanobacteria under the chill-light stress in winter. IMPORTANCE: Outbreak of cyanobacterial blooms in freshwater lakes is a worldwide environmental problem. In the annual cycle of bloom-forming cyanobacteria, overwintering is the least understood stage. Survival of Synechocystis sp. strain PCC 6803 under long-term chill (5°C)-light stress has been established as a model for molecular studies on overwintering of cyanobacteria. Here, we show that spermidine, the most common polyamine in cyanobacteria, promotes the survivability of Synechocystis under long-term chill-light stress and that the physiological function is based on its effects on gene expression and recovery from protein damage. This is the first report on the role of polyamines in survival of overwintering cyanobacteria. We also analyzed spermidine synthesis pathways in cyanobacteria on the basis of bioinformatic and experimental data.


Subject(s)
Seasons , Spermidine/metabolism , Synechocystis/metabolism , Bacterial Proteins , Cold Temperature , Gene Expression Regulation, Bacterial , Light , Microbial Viability , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Synechocystis/genetics , Synechocystis/radiation effects , Up-Regulation
7.
Curr Stem Cell Res Ther ; 10(2): 153-8, 2015.
Article in English | MEDLINE | ID: mdl-25248676

ABSTRACT

Induced pluripotent stem (iPS) cells were created from mouse fibroblasts by induced expression of Yamanaka factors, Oct3/4, Sox2, Klf4, and c-Myc. This technique has quickly resulted in an exponential increase in the amount of pluripotency studies, and has provided a valuable tool in regenerative medicine. At the same time, many methodologies to generate iPS cells have been reported, and are comprised mainly of viral methods and non-viral methods. Although viral methods may not be applicable for clinical applications, various nonviral methods have been reported in recent years, including DNA vector-based approaches, transfection of mRNA, transduction of reprogramming proteins, and use of small molecule compounds. This review summarizes and evaluates these non-viral methods.


Subject(s)
Induced Pluripotent Stem Cells/physiology , Animals , Cells, Cultured , Cellular Reprogramming , Cellular Reprogramming Techniques , Humans , Kruppel-Like Factor 4 , Transfection
8.
J Mater Chem B ; 1(15): 2038-2047, 2013 Apr 21.
Article in English | MEDLINE | ID: mdl-32260893

ABSTRACT

This paper reports the first fluorescent sensor for medium-chain fatty acids in water. The hybrid sensing material (S2) was prepared by the reaction of a rationally designed "recognition center", N-butyl-4-piperazin-1,8-naphthalimide, with a 3-glycidoxypropyl group which is pre-grafted on the interior of a mesoporous solid (MCM-41). The organo-functionalization of the mesoporous solid (MCM-41) was confirmed by FT-IR, 29Si MAS NMR and elemental analysis. The results of XRD, N2 physical adsorption-desorption, SEM and TEM studies proved that the organized structure of the nanoscopic porous solid is preserved after the reactions. The fatty acid-selective signaling behavior of S2 was investigated in water at pH = 5.80/7.16/8.00. This material displays much stronger fluorescence enhancement with C8-C12 fatty acids than with the shorter and longer chains in aqueous media, both in the absence and in the presence of aromatic acids.

9.
World J Microbiol Biotechnol ; 28(11): 3219-25, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22851191

ABSTRACT

Microalgal lipids are promising alternative feedstocks for biodiesel production. Scenedesmus sp. NJ-1, an oil-rich freshwater microalga isolated from Antarctica, was identified to be a suitable candidate to produce biodiesel in this study. This strain could grow at temperatures ranging from 4 to 35 °C. With regular decrease in nitrate concentration in the medium, large quantities of triacylglycerols accumulated under batch culture conditions detected by thin layer chromatography and BODIPY 505/515 fluorescent staining. Scenedesmus sp. NJ-1 achieved the average biomass productivity of 0.105 g l⁻¹ d⁻¹ (dry weight) and nearly the highest lipid content (35 % of dry cell weight) was reached at day 28 in the batch culture. Neutral lipids accounted for 78 % of total lipids, and C18:1 (n-9), C16:0 were the major fatty acids in total lipids, composing 37 and 20 % of total fatty acids of Scenedesmus sp. NJ-1 grown for 36 days, respectively. These results suggested that Scenedesmus sp. NJ-1 was a good source of microalgal oils for biodiesel production.


Subject(s)
Biofuels/microbiology , Lipid Metabolism , Scenedesmus/isolation & purification , Scenedesmus/metabolism , Antarctic Regions , Biomass , Culture Media/chemistry , DNA, Algal/chemistry , DNA, Algal/genetics , Molecular Sequence Data , Scenedesmus/classification , Scenedesmus/genetics , Sequence Analysis, DNA , Soil Microbiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...