Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Sci ; 44(3): 529-544, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38809379

ABSTRACT

OBJECTIVE: To uncover the mechanisms underlying the development of colorectal cancer (CRC), we applied bioinformatic analyses to identify key genes and experimentally validated their possible roles in CRC onset and progression. METHODS: We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis on differentially expressed genes (DEGs), constructed a protein-protein interaction (PPI) network to find the top 10 hub genes, and analyzed their expression in colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ). We also studied the correlation between these genes and immune cell infiltration and prognosis and validated the expression of SLC9A2 in CRC tissues and cell lines using qRT-PCR and Western blotting. Functional experiments were conducted in vitro to investigate the effects of SLC9A2 on tumor growth and metastasis. RESULTS: We found 130 DEGs, with 45 up-regulated and 85 down-regulated in CRC. GO analysis indicated that these DEGs were primarily enriched in functions related to the regulation of cellular pH, zymogen granules, and transmembrane transporter activity. KEGG pathway analysis revealed that the DEGs played pivotal roles in pancreatic secretion, rheumatoid arthritis, and the IL-17 signaling pathway. We identified 10 hub genes: CXCL1, SLC26A3, CXCL2, MMP7, MMP1, SLC9A2, SLC4A4, CLCA1, CLCA4, and ZG16. GO enrichment analysis showed that these hub genes were predominantly involved in the positive regulation of transcription. Gene expression analysis revealed that CXCL1, CXCL2, MMP1, and MMP7 were highly expressed in CRC, whereas CLCA1, CLCA4, SLC4A4, SLC9A2, SLC26A3, and ZG16 were expressed at lower levels. Survival analysis revealed that 5 key genes were significantly associated with the prognosis of CRC. Both mRNA and protein expression levels of SLC9A2 were markedly reduced in CRC tissues and cell lines. Importantly, SLC9A2 overexpression in SW480 cells led to a notable inhibition of cell proliferation, migration, and invasion. Western blotting analysis revealed that the expression levels of phosphorylated ERK (p-ERK) and phosphorylated JNK (p-JNK) proteins were significantly increased, whereas there were no significant changes in the expression levels of ERK and JNK following SLC9A2 overexpression. Correlation analysis indicated a potential link between SLC9A2 expression and the MAPK signaling pathway. CONCLUSION: Our study suggests that SLC9A2 acts as a tumor suppressor through the MAPK pathway and could be a potential target for CRC diagnosis and therapy.


Subject(s)
Colorectal Neoplasms , Computational Biology , Gene Expression Regulation, Neoplastic , Protein Interaction Maps , Sodium-Hydrogen Exchangers , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Computational Biology/methods , Gene Expression Profiling/methods , Gene Ontology , Gene Regulatory Networks , Genes, Tumor Suppressor , Prognosis , Protein Interaction Maps/genetics , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism
2.
Curr Med Sci ; 43(1): 104-114, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36459303

ABSTRACT

OBJECTIVE: This study analyzed the role of G1 to S phase transition 1 protein (GSPT1) in promoting progression of liver cancer cells. METHODS: A bioinformatics database was used to analyze the expression levels of GSPT1 in liver cancer tissues and the prognosis of patients. Subsequently, Western blotting and quantitative PCR were used to verify the expression levels of GSPT1 between normal hepatocytes and hepatoma cells. We used a CRISPR/Cas9 system to construct knockouts of GSPT1 in HepG2 and HCCLM9 liver cancer cells. The effect of GSPT1 on liver cancer cell migration and invasion was analyzed using flow cytometry, migration, and tumor formation assays. RESULTS: The Cancer Genome Atlas Liver Hepatocellular Carcinoma dataset indicated that GSPT1 expression was upregulated in liver cancer cell lines, and patients with liver cancer had poor prognosis. Knockout of GSPT1 in cells significantly inhibited tumor proliferation, cell migration, and growth in vivo. CONCLUSION: In this study, we found that GSPT1 promotes the migration and invasion of liver cancer cells.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinogens , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Liver Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...