Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(29): 32340-32351, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32597161

ABSTRACT

This study proposes a novel approach, termed extrusion-microdrilling, to fabricate three-dimensional (3D) interconnected bioceramic scaffolds with channel-like macropores for bone regeneration. The extrusion-microdrilling method is characterized by ease of use, high efficiency, structural flexibility, and precision. The 3D interconnected ß-tricalcium phosphate bioceramic (EM-TCP) scaffolds prepared by this method showed channel-like square macropores (∼650 µm) by extrusion and channel-like round macropores (∼570 µm) by microdrilling as well as copious micropores. By incorporating a strontium-containing phosphate-based glass (SrPG), the obtained calcium phosphate-based bioceramic (EM-TCP/SrPG) scaffolds had noticeably higher compressive strength, lower porosity, and smaller macropore size, tremendously enhanced in vitro proliferation and osteogenic differentiation of mouse bone marrow stromal cells, and suppressed in vitro osteoclastic activities of RAW264.7 cells, as compared with the EM-TCP scaffolds. In vivo assessment results indicated that at postoperative week 6, new vessels and a large percentage of new bone tissues (24-25%) were formed throughout the interconnected macropores of EM-TCP and EM-TCP/SrPG, which were implanted in the femoral defects of rabbits; the bone formation of the EM-TCP group was comparable to that of the EM-TCP/SrPG group. At 12 weeks postimplantation, the bone formation percentage of EM-TCP was slightly reduced, while that of EM-TCP/SrPG with a slower degradation rate was pronouncedly increased. This work provides a new strategy to fabricate interconnected bioceramic scaffolds allowing for fast bone regeneration, and the EM-TCP/SrPG scaffolds are promising for efficiently repairing bone defects.


Subject(s)
Biocompatible Materials/pharmacology , Bone Regeneration/drug effects , Bone Substitutes/pharmacology , Calcium Phosphates/pharmacology , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Bone Substitutes/chemical synthesis , Bone Substitutes/chemistry , Calcium Phosphates/chemical synthesis , Calcium Phosphates/chemistry , Cells, Cultured , Mice , Osteoclasts/drug effects , Osteogenesis/drug effects , Particle Size , RAW 264.7 Cells , Surface Properties , Tissue Engineering
2.
Mater Sci Eng C Mater Biol Appl ; 112: 110892, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32409050

ABSTRACT

Magnesium and strontium are able to enhance osteogenesis and suppress osteoclastic activities simultaneously, and they were nontoxic in wide concentration ranges; these make the magnesium-strontium phosphate bioceramics suitable for treating osteoporotic bone defects. The aim of this study was to investigate the effects of strontium amount on the mechanical strength and cell-biological performance of magnesium-strontium phosphate [MgxSr3-x(PO4)2; 3-x = 0, 0.1, 0.25, 0.5, 0.75, 1] bioceramics, which were sintered at 1100 °C. The results indicated that the magnesium-strontium phosphate bioceramics except Mg2.9Sr0.1(PO4)2 and Mg2.25Sr0.75(PO4)2 bioceramics had considerable compressive strength. The variation in magnesium and strontium contents did not regularly affect the in vitro osteogenic differentiation and osteoclastic activities. The Mg2.75Sr0.25(PO4)2 bioceramic had the most desirable overall performance, as reflected by considerably high compressive strength, enhanced in vitro osteogenesis and inhibited osteoclastic activities. Therefore, the Mg2.75Sr0.25(PO4)2 bioceramic is considered a promising biomaterial for osteoporotic bone regeneration.


Subject(s)
Biocompatible Materials/chemistry , Ceramics/chemistry , Magnesium Compounds/chemistry , Phosphates/chemistry , Strontium/chemistry , Animals , Biocompatible Materials/pharmacology , Bone Regeneration/drug effects , Cell Differentiation/drug effects , Cell Line , Cell Survival/drug effects , Ceramics/pharmacology , Compressive Strength , Gene Expression/drug effects , Matrix Metalloproteinase 9/chemistry , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Osteoclasts/cytology , Osteoclasts/metabolism , Osteogenesis/drug effects , Porosity
3.
J Biomed Mater Res A ; 107(6): 1314-1323, 2019 06.
Article in English | MEDLINE | ID: mdl-30707498

ABSTRACT

Gallium (Ga) ions have been clinically approved for treating the diseases caused by the excessive bone resorption through the systemic administration. Nevertheless, little attention has been given to the Ga-containing biomaterials for repairing bone defects under the pathological condition of excessive bone resorption. In the current study, for the first time the Ga-containing phosphate glasses (GPGs) were introduced to modify the honeycomb ß-tricalcium phosphate (ß-TCP) bioceramic scaffolds, which were prepared by an extrusion method. The results indicated that the scaffolds were characterized by uniform pore structure and channel-like macropores. The addition of GPGs promoted densification of strut of scaffolds by achieving liquid-sintering of ß-TCP, thereby tremendously increasing the compressive strength. The ions released from scaffolds pronouncedly inhibited osteoclastogenesis-related gene expressions and multinuclearity of RAW264.7 murine monocyte cells, as well as expressions of early osteogenic makers of mouse bone mesenchymal stem cells (mBMSCs). However, the scaffolds with lower amount of Ga increased cell proliferation and upregulated expression of late osteogenic maker of mBMSCs. This study offers a novel approach to modify the bioceramic scaffolds for bone regeneration under the condition of accelerated bone resorption. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1314-1323, 2019.


Subject(s)
Bone Marrow Cells/metabolism , Bone Regeneration , Bone Resorption , Ceramics/chemistry , Gallium/chemistry , Mesenchymal Stem Cells/metabolism , Tissue Scaffolds/chemistry , Animals , Antigens, Differentiation/biosynthesis , Bone Marrow Cells/pathology , Bone Resorption/metabolism , Bone Resorption/pathology , Bone Resorption/therapy , Mesenchymal Stem Cells/pathology , Mice , RAW 264.7 Cells , Up-Regulation
4.
Colloids Surf B Biointerfaces ; 175: 158-165, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30530001

ABSTRACT

Magnesium (Mg) and strontium (Sr), which are essential nutrient elements in the natural bone, positively affect the osteogenic activity even in wide ranges of ion concentrations. However, it remains unknown whether magnesium-strontium phosphates [MgxSr3-x(PO4)2] are potential bone grafts for accelerating bone regeneration. Herein, a serial of MgxSr3-x(PO4)2, including Mg3(PO4)2, Mg2Sr(PO4)2, Mg1.5Sr1.5(PO4)2, MgSr2(PO4)2 and Sr3(PO4)2, were synthesized using a solid-state reaction approach. The physicochemical properties and cell behaviors of MgxSr3-x(PO4)2 bioceramics were characterized and compared with the common bone graft ß-tricalcium phosphate (ß-TCP). The results indicated that various MgxSr3-x(PO4)2 bioceramics differed in compressive strength and in vitro degradation rate. All the MgxSr3-x(PO4)2 bioceramics had excellent biocompatibility. In contrast to ß-TCP, the MgxSr3-x(PO4)2 enhanced alkaline phosphatase activity of mouse bone mesenchymal stem cells (mBMSCs), and inhibited osteoclastogenesis-related gene expression of RAW264.7 cells, but did not enhance osteogenesis-related gene expression of mBMSCs which were treated with osteogenesis induction supplements. However, Mg3(PO4)2 stimulated osteogenesis-related gene expression of mBMSCs without the treatment of osteogenesis induction supplements. This work contributes to the design of bone graft and may open a new avenue for the bone regeneration field.


Subject(s)
Biocompatible Materials/pharmacology , Ceramics/pharmacology , Magnesium Compounds/pharmacology , Phosphates/pharmacology , Strontium/pharmacology , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Bone Regeneration/drug effects , Bone Regeneration/genetics , Bone Substitutes/chemistry , Bone Transplantation/methods , Bone and Bones/cytology , Bone and Bones/drug effects , Bone and Bones/metabolism , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Ceramics/chemical synthesis , Ceramics/chemistry , Gene Expression/drug effects , Magnesium Compounds/chemical synthesis , Magnesium Compounds/chemistry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Osteogenesis/drug effects , Osteogenesis/genetics , Phosphates/chemical synthesis , Phosphates/chemistry , RAW 264.7 Cells , Strontium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...