Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123791, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38134656

ABSTRACT

Water content was an essential indicator in organic solvents, and it was necessary to develop a facile, cheap and readily available tool for the real-time, specifical and sensitive detection of water content. In this work, two novel D-π-A type near-infrared fluorescence sensors (DCM-1 and DCM-2) were designed and synthesized for the detection of trace water in organic solvents. DCM-1 and DCM-2 with solvent-dependent effects and large Stokes shift (>120 nm) showed good linear "intensity-to-content" relationships in four commonly-used organic solvents, and accomplished the ultra-fast and high-accuracy detection of the trace water in organic solvents. More importantly, a portable, fast, and accurate smartphone-assisted visual assay was designed for visual quantitative detection of the water content in organic solvents with a detection limit as low as 1.028 % v/v (e.g. in ethanol) and a wide detection range (0-60 % v/v). The smartphone-based visual assay was further applied to estimate the water content in disinfection alcohol and commercial liquor, which furnished a new strategy and broad prospects to achieve the accurate onsite detection of water content.


Subject(s)
Smartphone , Water , Alcoholic Beverages , Solvents , Ethanol , Fluorescent Dyes
2.
Front Oncol ; 13: 1149551, 2023.
Article in English | MEDLINE | ID: mdl-37287924

ABSTRACT

Pancreatic cancer (PC) is one of the most dangerous diseases that threaten human life, and investigating the details affecting its progression or regression is particularly important. Exosomes are one of the derivatives produced from different cells, including tumor cells and other cells such as Tregs, M2 macrophages, and MDSCs, and can help tumor growth. These exosomes perform their actions by affecting the cells in the tumor microenvironment, such as pancreatic stellate cells (PSCs) that produce extracellular matrix (ECM) components and immune cells that are responsible for killing tumor cells. It has also been shown that pancreatic cancer cell (PCC)-derived exosomes at different stages carry molecules. Checking the presence of these molecules in the blood and other body fluids can help us in the early stage diagnosis and monitoring of PC. However, immune system cell-derived exosomes (IEXs) and mesenchymal stem cell (MSC)-derived exosomes can contribute to PC treatment. Immune cells produce exosomes as part of the mechanisms involved in the immune surveillance and tumor cell-killing phenomenon. Exosomes can be modified in such a way that their antitumor properties are enhanced. One of these methods is drug loading in exosomes, which can significantly increase the effectiveness of chemotherapy drugs. In general, exosomes form a complex intercellular communication network that plays a role in developing, progressing, diagnosing, monitoring, and treating pancreatic cancer.

3.
Front Bioeng Biotechnol ; 11: 1146252, 2023.
Article in English | MEDLINE | ID: mdl-37077227

ABSTRACT

Given the high incidence of infection and the growing resistance of bacterial and viral infections to the traditional antiseptic, the need for novel antiseptics is critical. Therefore, novel approaches are urgently required to reduce the activity of bacterial and viral infections. Nanotechnology is increasingly being exploited for medical purposes and is of significant interest in eliminating or limiting the activity of various pathogens. Due to the increased surface-to-volume ratio of a given mass of particles, the antimicrobial properties of some naturally occurring antibacterial materials, such as zinc and silver, increase as particle size decreases into the nanometer regime. However, the physical structure of a nanoparticle and the way it interacts with and penetrates the bacteria also appear to provide unique bactericidal mechanisms. To measure the efficacy of nanoparticles (diameter 100 nm) as antimicrobial agents, it is necessary to comprehend the range of approaches for evaluating the viability of bacteria; each of them has its advantages and disadvantages. The nanotechnology-based disinfectants and sensors for SARS-CoV-2 provide a roadmap for creating more effective sensors and disinfectants for detecting and preventing coronaviruses and other infections. Moreover, there is an increasing role of nanotechnology-based approaches in various infections, including wound healing and related infection, nosocomial infections, and various bacterial infections. To meet the demand for patient care, nanotechnology-based disinfectants need to be further advanced with optimum approaches. Herein, we review the current burden of infectious diseases with a focus on SARS-CoV-2 and bacterial infection that significantly burdens developed healthcare systems and small healthcare communities. We then highlight how nanotechnology could aid in improving existing treatment modalities and diagnosis of those infectious agents. Finally, we conclude the current development and future perspective of nanotechnology for combating infectious diseases. The overall goal is to update healthcare providers on the existing role and future of nanotechnology in tackling those common infectious diseases.

4.
Int Immunopharmacol ; 118: 110062, 2023 May.
Article in English | MEDLINE | ID: mdl-36965367

ABSTRACT

Evidence reveals that gastric cancer (GC) is the fifth most common malignancy in humans, and about 770,000 people die from this cancer yearly. It has been reported that new cases and deaths from GC are more common in men than women. Therapeutic approaches, such as surgery, chemotherapy, and radiotherapy, have been common for treating GC. Nevertheless, due to the complications and limitations of these methods, researchers use novel approaches, such as immunotherapeutic or target therapies, to evaluate the effectiveness of treatment in patients with metastatic GC. Studies have shown that monotherapy is usually associated with unpromising outcomes, and combination therapy can be a more practical option for treating metastatic GC. Therefore, to clarify different aspects of chemotherapy and immunotherapy in patients with metastatic GC, this review discussed the achievements and challenges of combining immunotherapeutic methods with chemotherapeutic agents.


Subject(s)
Stomach Neoplasms , Male , Humans , Female , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Immunotherapy/methods , Combined Modality Therapy
5.
Cancers (Basel) ; 14(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36010836

ABSTRACT

Cancer immunotherapy has received more and more attention from cancer researchers over the past few decades. Various methods such as cell therapy, immune checkpoint blockers, and cancer vaccines alone or in combination therapies have achieved relatively satisfactory results in cancer therapy. Among these immunotherapy-based methods, cancer vaccines alone have not yet had the necessary efficacy in the clinic. Therefore, nanomaterials have increased the efficacy and ef-fectiveness of cancer vaccines by increasing their half-life and durability, promoting tumor mi-croenvironment (TME) reprogramming, and enhancing their anti-tumor immunity with minimal toxicity. In this review, according to the latest studies, the structure and different types of nanovaccines, the mechanisms of these vaccines in cancer treatment, as well as the advantages and disadvantages of these nanovaccines are discussed.

6.
Anal Bioanal Chem ; 414(19): 5887-5897, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35676562

ABSTRACT

Hypochlorous acid (HClO), the core bactericidal substance of the human immune system, plays a vital role in many physiological and pathological processes in the human body. In this work, we designed and synthesized a novel deep-red fluorescent probe TCF-ClO for the determination of hypochlorous acid through theoretical analysis. The results showed that probe TCF-ClO exhibited excellent characteristics of long-wavelength emission (635 nm), fast response (< 1 min), and low detection limit (24 nM). In addition, it had been successfully used for imaging of HClO in living HeLa cells. More importantly, the TCF-ClO composited paper-based sensing material was successfully constructed. The RGB/gray value was obtained from a mobile phone and computer, which could achieve the quantitative detection of HClO, with a linear detection range of 0-50 µM and a detection limit of 1.09 µM (RGB mode)/3.38 µM (gray mode). The function of the paper-based sensor extended from qualitative to quantitative detection of HClO, and it is expected to become a portable device widely used in the environmental area.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , HeLa Cells , Humans , Hypochlorous Acid/analysis
7.
Front Immunol ; 13: 770465, 2022.
Article in English | MEDLINE | ID: mdl-35450073

ABSTRACT

Cancer immunotherapy is exploited for the treatment of disease by modulating the immune system. Since the conventional in vivo animal and 2D in vitro models insufficiently recapitulate the complex tumor immune microenvironment (TIME) of the original tumor. In addition, due to the involvement of the immune system in cancer immunotherapy, more physiomimetic cancer models, such as patient-derived organoids (PDOs), are required to evaluate the efficacy of immunotherapy agents. On the other hand, the dynamic interactions between the neoplastic cells and non-neoplastic host components in the TIME can promote carcinogenesis, tumor metastasis, cancer progression, and drug resistance of cancer cells. Indeed, tumor organoid models can properly recapitulate the TIME by preserving endogenous stromal components including various immune cells, or by adding exogenous immune cells, cancer-associated fibroblasts (CAFs), vasculature, and other components. Therefore, organoid culture platforms could model immunotherapy responses and facilitate the immunotherapy preclinical testing. Here, we discuss the various organoid culture approaches for the modeling of TIME and the applications of complex tumor organoids in testing cancer immunotherapeutics and personalized cancer immunotherapy.


Subject(s)
Neoplasms , Organoids , Animals , Humans , Immunotherapy , Neoplasms/pathology , Precision Medicine , Tumor Microenvironment
8.
Exp Cell Res ; 408(2): 112858, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34600901

ABSTRACT

In contrast to conventional cancer treatment, in personalized cancer medicine each patient receives a specific treatment. The response to therapy, clinical outcomes, and tumor behavior such as metastases, tumor progression, carcinogenesis can be significantly affected by the heterogeneous tumor microenvironment (TME) and interpersonal differences. Therefore, using native tumor microenvironment mimicking models is necessary to improving personalized cancer therapy. Both in vitro 2D cell culture and in vivo animal models poorly recapitulate the heterogeneous tumor (immune) microenvironments of native tumors. The development of 3D culture models, native tumor microenvironment mimicking models, made it possible to evaluate the chemoresistance of tumor tissue and the functionality of drugs in the presence of cell-extracellular matrix and cell-cell interactions in a 3D construction. Various personalized tumor models have been designed to preserving the native tumor microenvironment, including patient-derived tumor xenografts and organoid culture strategies. In this review, we will discuss the patient-derived organoids as a native tumor microenvironment mimicking model in personalized cancer therapy. In addition, we will also review the potential and the limitations of organoid culture systems for predicting patient outcomes and preclinical drug screening. Finally, we will discuss immunotherapy drug screening in tumor organoids by using microfluidic technology.


Subject(s)
Extracellular Matrix/genetics , Neoplasms/therapy , Organoids/immunology , Tumor Microenvironment/genetics , Cell Culture Techniques , Extracellular Matrix/immunology , Humans , Immunotherapy , Neoplasms/immunology , Neoplasms/pathology , Precision Medicine , Tumor Microenvironment/immunology
9.
Oncol Lett ; 22(2): 575, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34113403

ABSTRACT

[This corrects the article DOI: 10.3892/ol.2021.12492.].

10.
Oncol Lett ; 21(3): 231, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33613720

ABSTRACT

Previous studies have reported that GATA3 is downregulated in multiple types of tumours, including gastric cancer and osteosarcoma. The aim of this study was to explore whether GATA3 serves as a tumour suppressor to inhibit hepatocellular carcinoma (HCC) development. Tumour tissue specimens and adjacent normal tissue specimens were obtained from 162 patients diagnosed with HCC in the Affiliated Hospital of Shaoxing University from July 2000 to May 2018. The result of the present study demonstrated that GATA3 was downregulated in HCC tumour tissues compared with that of adjacent normal tissues. The expression of GATA3 was also negatively associated with tumour size, TNM stage and lymph node metastasis. Additionally, analysis of the follow-up data revealed that low GATA3 expression was closely correlated with poor survival. Gain and loss of function analyses revealed that overexpression of GATA3 decreased the ability of proliferation, migration and invasion in HCC cell lines, whereas inhibition of GATA3 promoted the ability of proliferation, migration and invasion. In addition, GATA3 suppressed EMT through the regulation of slug expression. Additionally, slug overexpression attenuated the inhibitory effects of GATA3 overexpression on cancer cell proliferation, migration and invasion. Thus, GATA3 is downregulated in HCC, and suppresses cell proliferation, migration and invasion. Moreover, GATA3 transcriptionally inhibits slug expression, thereby suppressing EMT in HCC.

11.
Cell Tissue Res ; 384(1): 1-12, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33433685

ABSTRACT

Mesenchymal stem cell (MSC)-based tissue regeneration therapy has been extensively investigated for cardiac regeneration over the past two decades. Numerous animal and clinical investigations demonstrated the efficacy of various types of MSCs towards myocardial protection and restoration against anthracycline-induced cardiotoxicity (AIC). It has been established that local or systemic administration of MSCs considerably improved the cardiac function, while ameliorating inflammatory responses and myocardial fibrosis. Several factors influence the outcomes of MSC treatment for AIC, including MSC types, dosages, and routes and duration of administration. In this review, we discuss the recent (from 2015 to 2020) experimental and clinical research on the preventive and regeneration efficacy of different types of MSCs (with or without supporting agents) against AIC, as well as the key factors responsible for MSC-mediated cardiac repair. In addition, challenges and future perspectives of MSC-based cardiac regeneration therapy are also outlined.


Subject(s)
Anthracyclines/adverse effects , Cardiotoxicity/complications , Mesenchymal Stem Cells/metabolism , Humans
12.
Life Sci ; 252: 117647, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32275935

ABSTRACT

Approximately 98% of the human genome consists of non-coding sequences that are classified into two classes by size: small non-coding RNAs (≤200 nucleotides) and long non-coding RNAs (≥200 nucleotides). Long non-coding RNAs (lncRNAs) are involved in various cellular events and act as guides, signals, decoys, and dynamic scaffolds. Due to their oncogenic and tumor suppressive roles, lncRNAs are important in cancer development and growth. LncRNAs play their roles by modulating cancer hallmarks, including DNA damage, metastasis, immune escape, cell stemness, drug resistance, metabolic reprogramming, and angiogenesis. Angiogenesis is vital for solid tumors which guarantees their growth beyond 2 mm3. Tumor angiogenesis is a complex process and is regulated through interaction between pro-angiogenic and anti-angiogenic factors within the tumor microenvironment. There are accumulating evidence that different lncRNAs regulate tumor angiogenesis. In this paper, we described the functions and mechanisms of lncRNAs in tumor angiogenesis.


Subject(s)
Neoplasms/pathology , Neovascularization, Pathologic/pathology , RNA, Long Noncoding/genetics , DNA Damage/genetics , Drug Resistance, Neoplasm , Genome, Human , Humans , Neoplasms/genetics , Neovascularization, Pathologic/genetics , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...