Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Vet Sci ; 10: 1207950, 2023.
Article in English | MEDLINE | ID: mdl-37841471

ABSTRACT

Yaks are tough animals living in Tibet's hypoxic stress environment. However, the metabolite composition of yak milk and its role in hypoxic stress tolerance remains largely unexplored. The similarities and differences between yak and human milk in hypoxic stress tolerance are also unclear. This study explored yak colostrum (YC) and yak mature milk (YMM) using GC-MS, and 354 metabolites were identified in yak milk. A comparative metabolomic analysis of yak and human milk metabolites showed that over 70% of metabolites were species-specific. Yak milk relies mainly on essential amino acids- arginine and essential branched-chain amino acids (BCAAs): L-isoleucine, L-leucine, and L-valine tolerate hypoxic stress. To slow hypoxic stress, human breast milk relies primarily on the neuroprotective effects of non-essential amino acids or derivates, such as citrulline, sarcosine, and creatine. In addition, metabolites related to hypoxic stress were significantly enriched in YC than in YMM. These results reveal the unique metabolite composition of yak and human milk and provide practical information for applying yak and human milk to hypoxic stress tolerance.

2.
Animals (Basel) ; 12(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36290198

ABSTRACT

High-altitude stress threatens the survival rate of Tibetan sheep and reduces their fertility. However, the molecular basis of this phenomenon remains elusive. Here, we used RNA-seq to elucidate the transcriptome dynamics of high-altitude stress in Tibetan sheep ovaries. In total, 104 genes were characterized as high-altitude stress-related differentially expressed genes (DEGs). In addition, 36 DEGs contributed to ovarian follicle development, and 28 of them were downregulated under high-altitude stress. In particular, high-altitude stress significantly suppressed the expression of two ovarian lymphatic system marker genes: LYVE1 and ADAMTS-1. Network analysis revealed that luteinizing hormone (LH)/follicle-stimulating hormone (FSH) signaling-related genes, such as EGR1, FKBP5, DUSP1, and FOS, were central regulators in the DEG network, and these genes were also suppressed under high-altitude stress. As a post-transcriptional regulation mechanism, alternative splicing (AS) is ubiquitous in Tibetan sheep. High-altitude stress induced 917 differentially alternative splicing (DAS) events. High-altitude stress modulated DAS in an AS-type-specific manner: suppressing skipped exon events but increasing retained intron events. C2H2-type zinc finger transcription factors and RNA processing factors were mainly enriched in DAS. These findings revealed high-altitude stress repressed ovarian development by suppressing the gene expression of LH/FSH hormone signaling genes and inducing intron retention of C2H2-type zinc finger transcription factors.

3.
Phytopathology ; 111(6): 1017-1028, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33258412

ABSTRACT

MAPKKK is the largest family of mitogen-activated protein kinase (MAPK) cascades and is known to play important roles in plant pathogen interaction by regulating fungal cell proliferation, growth, and pathogenicity. Thus far, only a few have been characterized because of the functional redundancy of MAPKKKs. In this study, it is interesting that Plasmodiophora brassicae (Pb)MAPKKK7 was clustered into the A3 subgroup of plant MAPKKKs by a phylogenetic analysis and also with the BCK1 and STE groups of fungal MAPKKKs. PbMAPKKK7 function in reactive oxygen species accumulation and cell death in Nicotiana benthamiana was characterized. Agroinfiltration with the PbMAPKKK7 mutated protein kinase domain relieved these changes. Interestingly, the induction of cell death was dependent on light intensity. Transcriptional profiling analysis demonstrated that PbMAPKKK7 was highly expressed during cortex infection stages, indicating its important role in P. brassicae infection. These functional analyses of PbMAPKKK7 build knowledge of new roles of the MAPK cascade pathway in N. benthamiana and P. brassicae interactions.


Subject(s)
Plasmodiophorida , Mitogen-Activated Protein Kinases/genetics , Phylogeny , Plant Diseases , Nicotiana
SELECTION OF CITATIONS
SEARCH DETAIL