Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 50(25): 6367-82, 2007 Dec 13.
Article in English | MEDLINE | ID: mdl-17994684

ABSTRACT

Indomethacin, a nonselective cyclooxygenase (COX) inhibitor, was modified in three distinct regions in an attempt both to increase cyclooxygenase-2 (COX-2) selectivity and to enhance drug safety by covalent attachment of an organic nitrate moiety as a nitric oxide donor. A human whole-blood COX assay shows the modifications on the 3-acetic acid part of the indomethacin yielding an amide-nitrate derivative 32 and a sulfonamide-nitrate derivative 61 conferred COX-2 selectivity. Along with their respective des-nitrate analogs, for example, 31 and 62, the nitrates 32 and 61 were effective antiinflammatory agents in the rat air-pouch model. After oral dosing, though, only 32 increased nitrate and nitrite levels in rat plasma, indicating that its nitrate tether served as a nitric oxide donor in vivo. In a rat gastric injury model, examples 31 and 32 both show a 98% reduction in gastric lesion score compared to that of indomethacin. In addition, the nitrated derivative 32 inducing 85% fewer gastric lesions when coadministered with aspirin as compared to the combination of aspirin and valdecoxib.


Subject(s)
Cyclooxygenase 2 Inhibitors/chemical synthesis , Indomethacin/analogs & derivatives , Indomethacin/chemical synthesis , Nitric Oxide Donors/chemical synthesis , Animals , Aspirin/adverse effects , Celecoxib , Cyclooxygenase 2 Inhibitors/adverse effects , Cyclooxygenase 2 Inhibitors/pharmacology , Drug Design , Drug Synergism , Female , Gastric Mucosa/pathology , Humans , Hydroxamic Acids/adverse effects , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacology , Indomethacin/adverse effects , Indomethacin/pharmacology , Male , Nitric Oxide Donors/adverse effects , Nitric Oxide Donors/pharmacology , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley , Stomach Ulcer/chemically induced , Stomach Ulcer/pathology , Structure-Activity Relationship , Sulfonamides/pharmacology
2.
J Med Chem ; 46(25): 5484-504, 2003 Dec 04.
Article in English | MEDLINE | ID: mdl-14640557

ABSTRACT

A novel series of benzo-1,3-dioxolane metharyl derivatives was synthesized and evaluated for cyclooxygenase-2 (COX-2) and cyclooxygenase-1 (COX-1) inhibition in human whole blood (HWB). In the present study, structure-activity relationships (SAR) in the metharyl analogues were investigated. The spacer group and substitutions in the spacer group were found to be quite important for potent COX-2 inhibition. Compounds in which a methylene group (8a-c), carbonyl group (12a-c), or methylidene group (7a-c) connected cycloalkyl groups to the central benzo-1,3-dioxolane template were found to be potent and selective COX-2 inhibitors. Aryl-substituted compounds linked to the central ring by either a methylene or a carbonyl spacer resulted in potent, highly selective COX-2 inhibitors. In this series of substituted-(2H-benzo[3,4-d]1,3-dioxolan-5-yl))-1-(methylsulfonyl)benzene compounds, SAR studies demonstrated that substitution at the 3-position of the aryl group optimized COX-2 selectivity and potency, whereas substitution at the 4-position attenuated COX-2 inhibition. Mono- or difluoro substitution at meta position(s), as in 22c and 22h, was advantageous for both in vitro COX-2 potency and selectivity (e.g., COX-2 IC(50) for 22c = 1 microM and COX-1 IC(50) for 22c = 20 microM in HWB assay). Several novel compounds in the (2H-benzo[3,4-d]1,3-dioxolan-5-yl))-1-(methylsulfonyl)benzene series, as shown in structures 7c, 8a, 12a, 21c, 22c, 22e, and 22h, selectively inhibited COX-2 activity by 40-50% at a test concentration of 1 microM in an in vitro HWB assay.


Subject(s)
Cyclooxygenase Inhibitors/chemical synthesis , Cycloparaffins/chemical synthesis , Dioxolanes/chemical synthesis , Isoenzymes/antagonists & inhibitors , Acute Disease , Administration, Oral , Animals , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Cycloparaffins/chemistry , Cycloparaffins/pharmacology , Dioxolanes/chemistry , Dioxolanes/pharmacology , Female , Humans , In Vitro Techniques , Inflammation/drug therapy , Male , Membrane Proteins , Prostaglandin-Endoperoxide Synthases , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...