Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pineal Res ; 76(4): e12960, 2024 May.
Article in English | MEDLINE | ID: mdl-38747028

ABSTRACT

Natural products, known for their environmental safety, are regarded as a significant basis for the modification and advancement of fungicides. Melatonin, as a low-cost natural indole, exhibits diverse biological functions, including antifungal activity. However, its potential as an antifungal agent has not been fully explored. In this study, a series of melatonin derivatives targeting the mitogen-activated protein kinase (Mps1) protein of fungal pathogens were synthesized based on properties of melatonin, among which the trifluoromethyl-substituted derivative Mt-23 exhibited antifungal activity against seven plant pathogenic fungi, and effectively reduced the severity of crop diseases, including rice blast, Fusarium head blight of wheat and gray mold of tomato. In particular, its EC50 (5.4 µM) against the rice blast fungus Magnaporthe oryzae is only one-fourth that of isoprothiolane (22 µM), a commercial fungicide. Comparative analyzes revealed that Mt-23 simultaneously targets the conserved protein kinase Mps1 and lipid protein Cap20. Surface plasmon resonance assays showed that Mt-23 directly binds to Mps1 and Cap20. In this study, we provide a strategy for developing antifungal agents by modifying melatonin, and the resultant melatonin derivative Mt-23 is a commercially valuable, eco-friendly and broad-spectrum antifungal agent to combat crop disease.


Subject(s)
Antifungal Agents , Melatonin , Melatonin/pharmacology , Melatonin/chemistry , Melatonin/analogs & derivatives , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Plant Diseases/microbiology , Fungal Proteins/metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis
2.
Commun Biol ; 6(1): 1260, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38087033

ABSTRACT

BAK permeabilizes the mitochondrial outer membrane, causing apoptosis. This apoptotic activity of BAK is stimulated by binding prodeath activators within its canonical hydrophobic groove. Parkin, an E3 ubiquitin (Ub) ligase, can ubiquitinate BAK, which inhibits BAK apoptotic activity. However, the molecular mechanism underlying the inhibition of ubiquitination remains structurally uncharacterized. Here, we utilize truncated and soluble BAK to construct a mimetic of K113-ubiquitinated BAK (disulfide-linked UbG76C ~ BAKK113C) and further present its NMR-derived structure model. The classical L8-I44-H68-V70 hydrophobic patch of the conjugated Ub subunit binds within the canonical hydrophobic groove of BAK. This Ub occludes the binding of prodeath BID activators in the groove and impairs BID-triggered BAK activation and membrane permeabilization. Reduced interaction between Ub and BAK subunits allows BID to activate K113-ubiquitinated BAK. These mechanistic insights suggest a nonsignaling function of Ub in that it directly antagonizes stimuli targeting Ub-modified proteins rather than by recruiting downstream partners for cellular messaging.


Subject(s)
Ubiquitin-Protein Ligases , Ubiquitin , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Mitochondrial Membranes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...