Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Food Chem ; 450: 139333, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38636384

ABSTRACT

Camellia saponins are important by-products of Camellia Oleifer Abel. processing. In this study, an eco-friendly method based on natural deep eutectic solvents (NaDESs, proline and glycerol at a molar ratio of 2:5) was established to extract saponins from C.oleifera cakes. The content of saponin (702.22 ± 1.28 mg/g) obtained using NaDES was higher than those extracted using water or methanol. UPLC-Q-TOF MS analysis of chemical structure showed that the difference in the extraction technique alter individual saponins. A widely targeted metabolomic approach and KEGG metabolic pathway analysis showed that the upregulated metabolites in the NaDES-based extract mainly included flavonoids, alkaloids, and phenolic acids; and they were involved in arginine and proline metabolism, metabolic pathways, phenylpropanoid biosynthesis, biosynthesis of secondary metabolites, and flavonoid biosynthesis. The present study proposes a selective substitute for use in the extraction of camellia saponins with composition analysis.


Subject(s)
Camellia , Metabolomics , Plant Extracts , Saponins , Camellia/chemistry , Camellia/metabolism , Saponins/chemistry , Saponins/metabolism , Saponins/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Solvents/chemistry , Chromatography, High Pressure Liquid , Mass Spectrometry
2.
Gels ; 9(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37754406

ABSTRACT

Hydrogels containing renewable resources, such as hemicellulose, have received a lot of attention owing to their softness and electrical conductivity which could be applied in soft devices and wearable equipment. However, traditional hemicellulose-based hydrogels generally exhibit poor electrical conductivity and suffer from freezing at lower temperatures owing to the presence of a lot of water. In this study, we dissolved hemicellulose by employing deep eutectic solvents (DESs), which were prepared by mixing choline chloride and imidazole. In addition, hemicellulose-based DES hydrogels were fabricated via photo-initiated reactions of acrylamide and hemicellulose with N, N'-Methylenebisacrylamide as a crosslinking agent. The produced hydrogels demonstrated high electrical conductivity and anti-freezing properties. The conductivity of the hydrogels was 2.13 S/m at room temperature and 1.97 S/m at -29 °C. The hydrogel's freezing point was measured by differential scanning calorimetry (DSC) to be -47.78 °C. Furthermore, the hemicellulose-based DES hydrogels can function as a dependable and sensitive strain sensor for monitoring a variety of human activities.

3.
Carbohydr Polym ; 312: 120827, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37059554

ABSTRACT

Stretchable and tough polysaccharide-based functional hydrogels have gained popularity for various applications. However, it still remains a great challenge to simultaneously own satisfactory stretchability and toughness, particularly when incorporating renewable xylan to offer sustainability. Herein, we describe a novel stretchable and tough xylan-based conductive hydrogel utilizing the natural feature of rosin derivative. The effect of different compositions on the mechanical properties and the physicochemical properties of corresponding xylan-based hydrogels were systematically investigated. Owing to the multiple non-covalent interactions among different components to dissipate energies and the strain-induced orientation of rosin derivative during the stretching, the highest tensile strength, strain, and toughness of xylan-based hydrogels could reach 0.34 MPa, 2098.4 %, and 3.79 ± 0.95 MJ/m3, respectively. Furthermore, by incorporating MXene as the conductive fillers, the strength and toughness of hydrogels were further enhanced to 0.51 MPa and 5.95 ± 1.19 MJ/m3. Finally, the synthesized xylan-based hydrogels were able to serve as a reliable and sensitive strain sensor to monitor the movements of human beings. This study provides new insights to develop stretchable and tough conductive xylan-based hydrogel, especially utilizing the natural feature of bio-based resources.


Subject(s)
Hydrogels , Xylans , Humans , Electric Conductivity , Movement
4.
Foods ; 12(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36766030

ABSTRACT

The camellia seed cake proteins (CP) used in this study were individually hydrolyzed with neutral protease, alkaline protease, papain, and trypsin. The results showed that the hydrolysate had the highest ACE inhibitory activity at 67.36 ± 0.80% after four hours of neutral protease hydrolysis. Val-Val-Val-Pro-Gln-Asn (VVVPQN) was then obtained through ultrafiltration, Sephadex G-25 gel chromatography separation, LC-MS/MS analysis, and in silico screening. VVVPQN had ACE inhibitory activity with an IC50 value of 0.13 mg/mL (198.66 µmol/L), and it inhibited ACE in a non-competitive manner. The molecular docking indicated that VVVPQN can combine with ACE to form eight hydrogen bonds. The results of the stability study showed that VVVPQN maintained high ACE-inhibitory activity in weakly acidic and neutral environments and that heat treatment (20-80 °C) and Na+, Mg2+, as well as Fe3+ metal ions had little effect on the activity of VVVPQN. Moreover, it remained relatively stable after in vitro simulated gastrointestinal digestion. These results revealed that VVVPQN identified in camellia seed cake has the potential to be applied in functional food or antihypertensive drugs.

5.
Foods ; 12(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36673484

ABSTRACT

In recent years, food-derived hypoglycemic peptides have received a lot of attention in the study of active peptides, but their anti-diabetic mechanism of action is not yet clear. In this study, camellia seed cake protein (CSCP) was used to prepare active peptides with α-glucosidase inhibition. The optimization of the preparation of camellia seed cake protein hydrolyzed peptides (CSCPH) was conducted via response surface methodology (RSM) using a protamex with α-glucosidase inhibition as an indicator. The optimal hydrolysis conditions were pH 7.11, 4300 U/g enzyme concentration, 50 °C hydrolysis temperature, and 3.95 h hydrolysis time. Under these conditions, the α-glucosidase inhibition rate of CSCPH was 58.70% (IC50 8.442 ± 0.33 mg/mL). The peptides with high α-glucosidase inhibitory activity were isolated from CSCPH by ultrafiltration and Sephadex G25. Leu-Leu-Val-Leu-Tyr-Tyr-Glu-Tyr (LLVLYYEY) and Leu-Leu-Leu-Leu-Pro-Ser-Tyr-Ser-Glu-Phe (LLLLPSYSEF) were identified and synthesized for the first time by Liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) analysis and virtual screening with IC50 values of 0.33 and 1.11 mM, respectively. Lineweaver-Burk analysis and molecular docking demonstrated that LLVLYYEY was a non-competitive inhibitor of α-glucosidase, whereas LLLLPSYSEF inhibited α-glucosidase, which displayed a mixed inhibition mechanism. The study suggests the possibility of using peptides from Camellia seed cake as hypoglycaemic compounds for the prevention and treatment of diabetes.

6.
J Food Sci ; 87(9): 4027-4039, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35975757

ABSTRACT

Camellia oleifera shells are abundant in polyphenolic compounds. Green extraction methods of polyphenolic compounds are essential to ensure product quality, efficiency, process cost, environment, and safety. This study investigated the effect of Tween 80 and Rhamnolipid surfactants on the production and utilization of stabilized carbon dioxide nanobubbles (CO2 -NBs). The results confirmed the presence of the CO2 -NBs in ultra-pure water with a concentration of 8.45 ± 1.05 × 108  ml-1 , among which the stable CO2 -NBs possessed a mean size of 40-90 nm and a negative zeta potential (-41.6 ± 1.3 mV). Further, the efficiency of CO2 -NBs combined with ultrasonication (CO2 -NBs-Rh-UAE) was evaluated to extract polyphenols from Camellia oleifera shells (waste). The CO2 -NBs treatment with ultrasonication showed the highest total phenolic content (TPC) and total flavonoid content (TFC) (36.75 ± 0.22 mg GAE/g DW and 24.06 ± 0.22 mg RE/g DW, respectively). Overall, this study demonstrated an innovative approach for producing, stabilizing, and utilizing biosurfactant stabilized CO2 -NBs to extract polyphenolic compounds from the waste agricultural products. These findings highlighted the potential application of biosurfactant-stabilized CO2 -NBs.


Subject(s)
Camellia , Carbon Dioxide , Flavonoids , Polyphenols/analysis , Polysorbates , Surface-Active Agents , Waste Products , Water
7.
J Environ Sci Health B ; 39(4): 675-87, 2004 May.
Article in English | MEDLINE | ID: mdl-15473646

ABSTRACT

Fourteen cultivars of bai cai (Brassica campestris L. ssp. chinensis var. communis) were grown in the nutrient solutions containing 0-0.5 microg mL(-1) of cadmium (Cd) to investigate genotypic differences in the effects of Cd exposure on the plant growth and uptake and distribution of Cd in bai cai plants. The Cd exposure significantly reduced the dry and fresh weights of roots and shoots, the dry weight ratio of shoot/root (S/R), total biomass, and chlorophyll content (SPAD value). Cd concentrations in bai cai ranged from 13.3 to 74.9 microg g(-1) DW in shoots and from 163.1 to 574.7 microg g(-1) DW in roots under Cd exposure, respectively. The considerable genotypic differences of Cd concentrations and accumulations in both shoots and roots were observed among 14 bai cai cultivars. Moreover, Cd mainly accumulated in the roots. Cd also caused the changes of uptake and distribution of nutrients in bai cai and under the influence of cadmium, the concentration of potassium (K) decreased in shoot and increased in root. However, the concentrations of magnesium (Mg), phosphorus (P), manganese (Mn), boron (B), and iron (Fe) increased in shoots and decreased in roots. In addition, Cd exposure resulted in an increase in calcium (Ca), sulphur (S), and zinc (Zn) concentrations in both shoots and roots but had no significant effects on the whole uptake of the examined mineral nutrients except for S.


Subject(s)
Brassica/growth & development , Brassica/genetics , Cadmium/adverse effects , Cadmium/pharmacokinetics , Soil Pollutants/adverse effects , Soil Pollutants/pharmacokinetics , Biomass , Genotype , Plant Roots/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL