Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Life Sci ; 351: 122867, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38914303

ABSTRACT

AIMS: FKBP5 encodes FKBP51, which has been implicated in stress-related psychiatric disorders, and its expression is often increased under chronic stress, contributing to mental dysfunctions. However, the precise role of FKBP51 in brain inflammation remains unclear. This study aimed to investigate the role of FKBP51 in microglia-mediated inflammatory responses in the central nervous system. MAIN METHODS: We employed a peripheral lipopolysaccharide (LPS) administration model to compare microglial activation and cytokine gene expression between Fkbp5 knockout (Fkbp5-KO) and wild-type (WT) male mice. Additionally, we used both BV2 and primary microglia in vitro to examine how Fkbp5 deletion influenced inflammation-related pathways and microglial functions. KEY FINDINGS: This study revealed that systemic LPS-induced microglial activation was significantly attenuated in Fkbp5-KO mice compared with WT mice. In Fkbp5-KO mice following the LPS challenge, there was a notable decrease in the expression of pro-inflammatory genes, coupled with an increase in the anti-inflammatory gene Arg1. Furthermore, Fkbp5 knockdown in BV2 microglial cells led to reduced expression of LPS-induced inflammatory markers, and targeted inhibition of NF-κB activation, while Akt signaling remained unaffected. Similar results were observed in Fkbp5-KO primary microglia, which exhibited not only decreased microglial activation but also a significant reduction in phagocytic activity in response to LPS stimulation. SIGNIFICANCE: This study highlights the critical role of FKBP51 in LPS-induced microglial activation and neuroinflammation. It shows that reducing FKBP51 levels attenuates inflammation through NF-κB signaling in microglia. This suggests that FKBP51 is a potential target for alleviating neuroinflammation-induced stress responses.


Subject(s)
Lipopolysaccharides , Microglia , NF-kappa B , Neuroinflammatory Diseases , Signal Transduction , Tacrolimus Binding Proteins , Animals , Male , Mice , Cytokines/metabolism , Inflammation/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Neuroinflammatory Diseases/metabolism , NF-kappa B/metabolism , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics
2.
Cell Biosci ; 13(1): 18, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36717938

ABSTRACT

BACKGROUND: Mutations in the human gene encoding the neuron-specific Eag1 (KV10.1; KCNH1) potassium channel are linked to congenital neurodevelopmental diseases. Disease-causing mutant Eag1 channels manifest aberrant gating function and defective protein homeostasis. Both the E3 ubiquitin ligase cullin 7 (Cul7) and the small acid protein 14-3-3 serve as binding partners of Eag1. Cul7 mediates proteasomal and lysosomal degradation of Eag1 protein, whereas over-expression of 14-3-3 notably reduces Eag1 channel activity. It remains unclear whether 14-3-3 may also contribute to Eag1 protein homeostasis. RESULTS: In human cell line and native rat neurons, disruptions of endogenous 14-3-3 function with the peptide inhibitor difopein or specific RNA interference up-regulated Eag1 protein level in a transcription-independent manner. Difopein hindered Eag1 protein ubiquitination at the endoplasmic reticulum and the plasma membrane, effectively promoting the stability of both immature and mature Eag1 proteins. Suppression of endogenous 14-3-3 function also reduced excitotoxicity-associated Eag1 degradation in neurons. Difopein diminished Cul7-mediated Eag1 degradation, and Cul7 knock-down abolished the effect of difopein on Eag1. Inhibition of endogenous 14-3-3 function substantially perturbed the interaction of Eag1 with Cul7. Further structural analyses suggested that the intracellular Per-Arnt-Sim (PAS) domain and cyclic nucleotide-binding homology domain (CNBHD) of Eag1 are essential for the regulatory effect of 14-3-3 proteins. Significantly, suppression of endogenous 14-3-3 function reduced Cul7-mediated degradation of disease-associated Eag1 mutant proteins. CONCLUSION: Overall these results highlight a chaperone-like role of endogenous 14-3-3 proteins in regulating Eag1 protein homeostasis, as well as a therapeutic potential of 14-3-3 modulators in correcting defective protein expression of disease-causing Eag1 mutants.

3.
J Biol Chem ; 296: 100484, 2021.
Article in English | MEDLINE | ID: mdl-33647316

ABSTRACT

Mutations in the human gene encoding the neuron-specific Eag1 voltage-gated K+ channel are associated with neurodevelopmental diseases, indicating an important role of Eag1 during brain development. A disease-causing Eag1 mutation is linked to decreased protein stability that involves enhanced protein degradation by the E3 ubiquitin ligase cullin 7 (CUL7). The general mechanisms governing protein homeostasis of plasma membrane- and endoplasmic reticulum (ER)-localized Eag1 K+ channels, however, remain unclear. By using yeast two-hybrid screening, we identified another E3 ubiquitin ligase, makorin ring finger protein 1 (MKRN1), as a novel binding partner primarily interacting with the carboxyl-terminal region of Eag1. MKRN1 mainly interacts with ER-localized immature core-glycosylated, as well as nascent nonglycosylated, Eag1 proteins. MKRN1 promotes polyubiquitination and ER-associated proteasomal degradation of immature Eag1 proteins. Although both CUL7 and MKRN1 contribute to ER quality control of immature core-glycosylated Eag1 proteins, MKRN1, but not CUL7, associates with and promotes degradation of nascent, nonglycosylated Eag1 proteins at the ER. In direct contrast to the role of CUL7 in regulating both ER and peripheral quality controls of Eag1, MKRN1 is exclusively responsible for the early stage of Eag1 maturation at the ER. We further demonstrated that both CUL7 and MKRN1 contribute to protein quality control of additional disease-causing Eag1 mutants associated with defective protein homeostasis. Our data suggest that the presence of this dual ubiquitination system differentially maintains Eag1 protein homeostasis and may ensure efficient removal of disease-associated misfolded Eag1 mutant channels.


Subject(s)
Ether-A-Go-Go Potassium Channels/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Ribonucleoproteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Animals , Cells, Cultured , Endoplasmic Reticulum/metabolism , Proteolysis , Proteostasis , Rats , Rats, Sprague-Dawley , Two-Hybrid System Techniques
4.
Hu Li Za Zhi ; 64(3): 82-89, 2017 Jun.
Article in Chinese | MEDLINE | ID: mdl-28580562

ABSTRACT

BACKGROUND & PROBLEMS: Hypothermia is the cause of multiple problems such as delayed awaking from anesthesia, feelings of discomfort, increased oxygen consumption, and increased risks of surgical wound infection and complications. A review of the record of post-operative patients receiving general anesthesia (GA) revealed that only 74% of the patients in our post-anesthesia room (PAR) had restored their body temperature to 36℃ after 60 minutes. Through situation analysis, several causes were identified, including insufficient warming facilities, lack of standard procedures and an audit system, lack of knowledge regarding hyperthermia among nurses, and the incompleteness of perioperative warming interventions performed by the healthcare team. PURPOSE: The aim of the present project was to apply team resource management (TRM) to raise the rate of body temperature restoration to 36°C after 60 minutes in our post-anesthesia room (PAR) from 74% to 100%. RESOLUTION: Several strategies were implemented to accelerate the post-operative rewarming for patients receiving GA, including: establishment of standard operating procedures for warming, conducting routine audits, purchasing warming facilities, conducting in-service education, applying TRM, and cooperating with nurses in operating rooms on executing the warming plan. RESULT: After implementing these strategies, our PAR achieved a 100% success rate in raising the body temperature of postoperative patients to 36°C after 60 minutes. CONCLUSIONS: The result demonstrates that hypothermia may be effectively avoided and that the quality of post-operative care may be effectively improved through transdisciplinary teamwork.


Subject(s)
Anesthesia, General , Health Resources , Patient Care Team , Rewarming , Anesthesia, General/adverse effects , Humans , Hypothermia/etiology
5.
J Neurosci ; 37(9): 2485-2503, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28167673

ABSTRACT

Voltage-gated CaV2.1 channels comprise a pore-forming α1A subunit with auxiliary α2δ and ß subunits. CaV2.1 channels play an essential role in regulating synaptic signaling. Mutations in the human gene encoding the CaV2.1 subunit are associated with the cerebellar disease episodic ataxia type 2 (EA2). Several EA2-causing mutants exhibit impaired protein stability and exert dominant-negative suppression of CaV2.1 wild-type (WT) protein expression via aberrant proteasomal degradation. Here, we set out to delineate the protein degradation mechanism of human CaV2.1 subunit by identifying RNF138, an E3 ubiquitin ligase, as a novel CaV2.1-binding partner. In neurons, RNF138 and CaV2.1 coexist in the same protein complex and display notable subcellular colocalization at presynaptic and postsynaptic regions. Overexpression of RNF138 promotes polyubiquitination and accelerates protein turnover of CaV2.1. Disrupting endogenous RNF138 function with a mutant (RNF138-H36E) or shRNA infection significantly upregulates the CaV2.1 protein level and enhances CaV2.1 protein stability. Disrupting endogenous RNF138 function also effectively rescues the defective protein expression of EA2 mutants, as well as fully reversing EA2 mutant-induced excessive proteasomal degradation of CaV2.1 WT subunits. RNF138-H36E coexpression only partially restores the dominant-negative effect of EA2 mutants on CaV2.1 WT functional expression, which can be attributed to defective membrane trafficking of CaV2.1 WT in the presence of EA2 mutants. We propose that RNF138 plays a critical role in the homeostatic regulation of CaV2.1 protein level and functional expression and that RNF138 serves as the primary E3 ubiquitin ligase promoting EA2-associated aberrant degradation of human CaV2.1 subunits.SIGNIFICANCE STATEMENT Loss-of-function mutations in the human CaV2.1 subunit are linked to episodic ataxia type 2 (EA2), a dominantly inherited disease characterized by paroxysmal attacks of ataxia and nystagmus. EA2-causing mutants may exert dominant-negative effects on the CaV2.1 wild-type subunit via aberrant proteasomal degradation. The molecular nature of the CaV2.1 ubiquitin-proteasome degradation pathway is currently unknown. The present study reports the first identification of an E3 ubiquitin ligase for CaV2.1, RNF138. CaV2.1 protein stability is dynamically regulated by RNF138 and auxiliary α2δ and ß subunits. We provide a proof of concept that protecting the human CaV2.1 subunit from excessive proteasomal degradation with specific interruption of endogenous RNF138 function may partially contribute to the future development of a novel therapeutic strategy for EA2 patients.


Subject(s)
Calcium Channels, N-Type/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Ataxia/genetics , Brain/drug effects , Brain/metabolism , Brain/ultrastructure , Calcium Channels, N-Type/genetics , Cell Line , Cells, Cultured , Cerebral Cortex/cytology , Cycloheximide/pharmacology , HEK293 Cells , Humans , Membrane Potentials/drug effects , Membrane Potentials/genetics , Mutation/genetics , Neuroblastoma/pathology , Neurons/drug effects , Neurons/metabolism , Nystagmus, Pathologic/genetics , Oocytes , Protein Synthesis Inhibitors/pharmacology , Proteolysis/drug effects , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Ubiquitination/drug effects , Ubiquitination/genetics , Xenopus
6.
Sci Rep ; 7: 40825, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28098200

ABSTRACT

Mammalian Eag1 (Kv10.1) potassium (K+) channels are widely expressed in the brain. Several mutations in the gene encoding human Eag1 K+ channel have been associated with congenital neurodevelopmental anomalies. Currently very little is known about the molecules mediating protein synthesis and degradation of Eag1 channels. Herein we aim to ascertain the protein degradation mechanism of rat Eag1 (rEag1). We identified cullin 7 (Cul7), a member of the cullin-based E3 ubiquitin ligase family, as a novel rEag1 binding partner. Immunoprecipitation analyses confirmed the interaction between Cul7 and rEag1 in heterologous cells and neuronal tissues. Cul7 and rEag1 also exhibited significant co-localization at synaptic regions in neurons. Over-expression of Cul7 led to reduced protein level, enhanced ubiquitination, accelerated protein turn-over, and decreased current density of rEag1 channels. We provided further biochemical and morphological evidence suggesting that Cul7 targeted endoplasmic reticulum (ER)- and plasma membrane-localized rEag1 to the proteasome and the lysosome, respectively, for protein degradation. Cul7 also contributed to protein degradation of a disease-associated rEag1 mutant. Together, these results indicate that Cul7 mediates both proteasomal and lysosomal degradations of rEag1. Our findings provide a novel insight to the mechanisms underlying ER and peripheral protein quality controls of Eag1 channels.


Subject(s)
Cullin Proteins/metabolism , Ether-A-Go-Go Potassium Channels/metabolism , Lysosomes/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , Cell Membrane/metabolism , Cullin Proteins/genetics , Cycloheximide/pharmacology , Endoplasmic Reticulum/metabolism , Ether-A-Go-Go Potassium Channels/genetics , HEK293 Cells , Humans , Leupeptins/pharmacology , Neurons/metabolism , Proteasome Endopeptidase Complex/chemistry , Protein Binding , Protein Stability/drug effects , Proteolysis/drug effects , Rats
7.
J Nutr Biochem ; 15(3): 142-8, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15023395

ABSTRACT

The aim of this study was to investigate the effects of genistein supplementation in a vitamin E-deficient diet on the genistein concentrations and the lipid oxidation of serum, liver and low-density lipoprotein (LDL) of hamsters. Thirty-six male hamsters were randomly divided into three groups and fed a vitamin E-deficient semisynthetic diet (AIN-76) containing different levels of genistein, i.e., G0 (control group, genistein-free diet), G50 (50 mg genistein/kg diet) and G200 (200 mg genistein/kg diet) for 5 weeks. The concentrations of genistein in serum and liver significantly increased with the increase of genistein supplementation. The vitamin E contents in LDL were higher in hamsters fed G50 or G200 diets than in hamsters fed genistein-free diet. Genistein supplementation to hamsters significantly reduced the propagation rate during conjugated diene formation of LDL oxidation, and the lag time of LDL oxidation in hamsters fed G200 diets was significantly lower than that of G0 diets. In addition, genistein supplementation significantly raised serum total antioxidant capacity and decreased the thiobarbituric acid-reactive substances (TBARS) of LDL and liver in hamsters. However, no significant differences in TBARS were found in serum, irrespective of genistein addition. On the other hand, the relative contents of polyunsaturated fatty acids in LDL were decreased after genistein supplementation. There was a negative correlation between lag time and P/S ratio, and a positive correlation between lag time and vitamin E contents. These data demonstrate that genistein supplementation markedly increased its concentrations in body tissues and reduced oxidative stress of lipid oxidation of serum, liver and LDL.


Subject(s)
Genistein/pharmacology , Lipid Peroxidation , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Cholesterol/metabolism , Cricetinae , Dietary Supplements , Enzyme Inhibitors/pharmacology , Fatty Acids/metabolism , Lipid Metabolism , Lipoproteins, LDL/metabolism , Male , Oxidative Stress , Oxygen/metabolism , Thiobarbituric Acid Reactive Substances , Time Factors , Vitamin E/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...