Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Open Biol ; 13(1): 220238, 2023 01.
Article in English | MEDLINE | ID: mdl-36629021

ABSTRACT

The endobiotic flagellate Monocercomonoides exilis is the only known eukaryote to have lost mitochondria and all its associated proteins in its evolutionary past. This final stage of the mitochondrial evolutionary pathway may serve as a model to explain events at their very beginning such as the initiation of protein import. We have assessed the capability of proteins from this eukaryote to enter emerging mitochondria using a specifically designed in vitro assay. Hydrogenosomes (reduced mitochondria) of Trichomonas vaginalis were incubated with a soluble protein pool derived from a cytosolic fraction of M. exilis, and proteins entering hydrogenosomes were subsequently detected by mass spectrometry. The assay detected 19 specifically and reproducibly imported proteins, and in 14 cases the import was confirmed by the overexpression of their tagged version in T. vaginalis. In most cases, only a small portion of the signal reached the hydrogenosomes, suggesting specific but inefficient transport. Most of these proteins represent enzymes of carbon metabolism, and none exhibited clear signatures of proteins targeted to hydrogenosomes or mitochondria, which is consistent with their inefficient import. The observed phenomenon may resemble a primaeval type of protein import which might play a role in the establishment of the organelle and shaping of its proteome in the initial stages of endosymbiosis.


Subject(s)
Eukaryota , Protozoan Proteins , Eukaryota/metabolism , Protozoan Proteins/metabolism , Organelles/chemistry , Organelles/metabolism , Mitochondria/metabolism , Protein Transport
2.
J Microbiol Immunol Infect ; 52(4): 630-637, 2019 Aug.
Article in English | MEDLINE | ID: mdl-29198954

ABSTRACT

BACKGROUND: Glucose is the major energy source that is converted to pyruvate for ATP generation in the trichomonad hydrogenosome. Under glucose restriction (GR), the regulation of amino acids metabolism is crucial for trichomonad growth and survival. RNA-sequencing (RNA-seq) analysis has been used to identify differentially expressed genes in Trichomonas vaginalis under GR, leading to significant advances in understanding adaptive responses of amino acid metabolism to GR. However, the levels of amino acid metabolites modulated by GR are unknown in T. vaginalis. METHODS: Herein, we describe a comprehensive metabolomic analysis of amino acid metabolites in the hydrogenosome using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry (LC-FT MS). The relative abundance of 17 hydrogenosomal amino acids was analyzed under GR and high-glucose (HG) conditions. RESULTS: Levels of most amino acids were higher in GR culture. Arginine was not detectable in either HG or GR cultures; however, its metabolic end-product proline was slightly increased under GR, suggesting that the arginine dihydrolase pathway was more activated by GR. Additionally, methionine catabolism was less stimulated under GR because of greater methionine accumulation. Furthermore, branched chain amino acids (BCAA), including leucine, isoleucine and valine, as well as phenylalanine and alanine, markedly accumulated under GR, indicating that glutamate-related metabolic pathways were remarkably enhanced in this setting. Our metabolomic analysis combined with previous RNA-seq data confirm the existence of several amino acid metabolic pathways in the hydrogenosome and highlight their potentially important roles in T. vaginalis under glucose deprivation.


Subject(s)
Amino Acids/metabolism , Biochemical Phenomena , Glucose/metabolism , Trichomonas vaginalis/metabolism , Chromatography, Liquid , Energy Metabolism , Enzyme Assays , Hydrolases/metabolism , Mass Spectrometry , Metabolic Networks and Pathways , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Sequence Analysis, RNA , Trichomonas vaginalis/genetics
3.
Sci Rep ; 7(1): 10430, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874813

ABSTRACT

ABSATRACT: Along with the constant improvement in high-throughput sequencing technology, an increasing number of transcriptome sequencing projects are carried out in organisms without decoded genome information and even on environmental biological samples. To study the biological functions of novel transcripts, the very first task is to identify their potential functions. We present a web-based annotation tool, FunctionAnnotator, which offers comprehensive annotations, including GO term assignment, enzyme annotation, domain/motif identification and predictions for subcellular localization. To accelerate the annotation process, we have optimized the computation processes and used parallel computing for all annotation steps. Moreover, FunctionAnnotator is designed to be versatile, and it generates a variety of useful outputs for facilitating other analyses. Here, we demonstrate how FunctionAnnotator can be helpful in annotating non-model organisms. We further illustrate that FunctionAnnotator can estimate the taxonomic composition of environmental samples and assist in the identification of novel proteins by combining RNA-Seq data with proteomics technology. In summary, FunctionAnnotator can efficiently annotate transcriptomes and greatly benefits studies focusing on non-model organisms or metatranscriptomes. FunctionAnnotator, a comprehensive annotation web-service tool, is freely available online at: http://fa.cgu.edu.tw/ . This new web-based annotator will shed light on field studies involving organisms without a reference genome.

4.
OMICS ; 20(11): 662-669, 2016 11.
Article in English | MEDLINE | ID: mdl-27828770

ABSTRACT

Pentatrichomonas hominis is an anaerobic flagellated protist that colonizes the large intestine of a number of mammals, including cats, dogs, nonhuman primates, and humans. The wide host range of this organism is alarming and suggests a rising zoonotic emergency. However, knowledge on in-depth biology of this protist is still limited. Similar to the human pathogen, Trichomonas vaginalis, P. hominis possesses hydrogenosomes instead of mitochondria. Studies in T. vaginalis indicated that hydrogenosome is essential for cell survival and associated with numerous pivotal biological functions, including drug resistance. To further decipher the biology of this important organelle, we undertook proteomic research in P. hominis hydrogenosomes. Lacking a decoded P. hominis genome, we utilized an RNA sequencing (RNA-seq) data set generated from P. hominis axenic culture as the reference for proteome analysis. Using this in-house reference data set and mass spectrometry (MS), we identified 442 putative hydrogenosomal proteins. Interestingly, the composition of the P. hominis hydrogenosomal proteins is very similar to that of T. vaginalis, but proteins such as Hmp36, Pam16, Pam18, and Isd11 are absent based on both MS and the RNA-seq. Our data underscore that P. hominis expresses different homologs of multiple gene families from T. vaginalis. To the best of our knowledge, we present here the first hydrogenosome proteome in a protist other than T. vaginalis that offers crucial new scholarship for global health, therapeutics, diagnostics, and veterinary medicine research. In addition, the research strategy used here using RNA sequencing and proteomics might inform future multi-omics research in other understudied organisms without decoded genomes.


Subject(s)
Organelles/metabolism , Protozoan Infections/parasitology , Protozoan Proteins/metabolism , Trichomonadida/metabolism , Zoonoses/parasitology , Animals , Cats , Dogs , Humans , Mass Spectrometry , Proteome/genetics , Proteomics , Protozoan Proteins/genetics , Sequence Analysis, RNA , Trichomonadida/genetics , Trichomonadida/ultrastructure
5.
Antimicrob Agents Chemother ; 59(11): 6891-903, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26303799

ABSTRACT

Trichomonas vaginalis colonizes the human urogenital tract and causes trichomoniasis, the most common nonviral sexually transmitted disease. Currently, 5-nitroimidazoles are the only recommended drugs for treating trichomoniasis. However, increased resistance of the parasite to 5-nitroimidazoles has emerged as a highly problematic public health issue. Hence, it is essential to identify alternative chemotherapeutic agents against refractory trichomoniasis. Tetracycline (TET) is a broad-spectrum antibiotic with activity against several protozoan parasites, but the mode of action of TET in parasites remains poorly understood. The in vitro effect of TET on the growth of T. vaginalis was examined, and the mode of cell death was verified by various apoptosis-related assays. Next-generation sequencing-based RNA sequencing (RNA-seq) was employed to elucidate the transcriptome of T. vaginalis in response to TET. We show that TET has a cytotoxic effect on both metronidazole (MTZ)-sensitive and -resistant T. vaginalis isolates, inducing some features resembling apoptosis. RNA-seq data reveal that TET significantly alters the transcriptome via activation of specific pathways, such as aminoacyl-tRNA synthetases and carbohydrate metabolism. Functional analyses demonstrate that TET disrupts the hydrogenosomal membrane potential and antioxidant system, which concomitantly elicits a metabolic shift toward glycolysis, suggesting that the hydrogenosomal function is impaired and triggers cell death. Collectively, we provide in vitro evidence that TET is a potential alternative therapeutic choice for treating MTZ-resistant T. vaginalis. The in-depth transcriptomic signatures in T. vaginalis upon TET treatment presented here will shed light on the signaling pathways linking to cell death in amitochondriate organisms.


Subject(s)
Antitrichomonal Agents/pharmacology , Tetracycline/pharmacology , Trichomonas vaginalis/drug effects , Cell Death/drug effects , Glycolysis/drug effects , High-Throughput Nucleotide Sequencing
6.
Parasit Vectors ; 8: 393, 2015 Jul 25.
Article in English | MEDLINE | ID: mdl-26205151

ABSTRACT

BACKGROUND: Iron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these molecules in iron-deficient T. vaginalis. METHODS: T. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study. Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis. The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase (L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was measured using JC-1 staining. RESULTS: We demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the hydrogenosomal functions. CONCLUSION: The findings in this study provide a novel role of NO in adaptation to iron-deficient stress in T. vaginalis and shed light on a potential therapeutic strategy for trichomoniasis.


Subject(s)
Iron Deficiencies , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide/pharmacology , Transcriptome , Trichomonas Infections/parasitology , Trichomonas vaginalis/drug effects , Adaptation, Physiological , Animals , Base Sequence , Benzimidazoles , Carbocyanines , Cell Survival/drug effects , Enzyme Inhibitors/pharmacology , High-Throughput Nucleotide Sequencing , Humans , Leupeptins/pharmacology , Models, Biological , Protozoan Proteins/antagonists & inhibitors , Reactive Oxygen Species/pharmacology , Sequence Analysis, RNA , Trichomonas vaginalis/genetics , Trichomonas vaginalis/physiology , omega-N-Methylarginine/pharmacology
7.
J Microbiol Immunol Infect ; 48(6): 662-75, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25440978

ABSTRACT

BACKGROUND: Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common nonviral sexually transmitted disease in the world. This infection affects millions of individuals worldwide annually. Although direct sexual contact is the most common mode of transmission, increasing evidence indicates that T. vaginalis can survive in the external environment and can be transmitted by contaminated utensils. We found that the growth of T. vaginalis under cold conditions is greatly inhibited, but recovers after placing these stressed cells at the normal cultivation temperature of 37 °C. However, the mechanisms by which T. vaginalis regulates this adaptive process are unclear. METHODS: An expressed sequence tag (EST) database generated from a complementary DNA library of T. vaginalis messenger RNAs expressed under cold-culture conditions (4 °C, TvC) was compared with a previously published normal-cultured EST library (37 °C, TvE) to assess the cold-stress responses of T. vaginalis. RESULTS: A total of 9780 clones were sequenced from the TvC library and were mapped to 2934 genes in the T. vaginalis genome. A total of 1254 genes were expressed in both the TvE and TvC libraries, and 1680 genes were only found in the TvC library. A functional analysis showed that cold temperature has effects on many cellular mechanisms, including increased H2O2 tolerance, activation of the ubiquitin-proteasome system, induction of iron-sulfur cluster assembly, and reduced energy metabolism and enzyme expression. CONCLUSION: The current study is the first large-scale transcriptomic analysis in cold-stressed T. vaginalis and the results enhance our understanding of this important protist.


Subject(s)
Cold-Shock Response/genetics , DNA, Protozoan/genetics , Trichomonas vaginalis/genetics , Trichomonas vaginalis/metabolism , Base Sequence , Energy Metabolism/genetics , Expressed Sequence Tags , Female , Gene Library , Humans , Hydrogen Peroxide/toxicity , Sequence Analysis, DNA , Trichomonas Vaginitis/microbiology , Trichomonas vaginalis/growth & development , Ubiquitination/genetics
8.
Biochim Biophys Acta ; 1840(1): 53-64, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23958562

ABSTRACT

BACKGROUND: To establish an infection in the vagina, Trichomonas vaginalis must adapt to various environmental cues for survival and further replication. Nutrient competition by lactobacilli, the major normal vaginal flora, is one of the mechanisms to limit the growth of other microorganisms. Additionally, lactobacilli produce H2O2 that can reduce the genital infections caused by other pathogens. Thus, the ability to overcome the metabolic stresses, such as glucose restriction (GR), as well as the oxidative stresses, is critical for T. vaginalis to establish an infection. METHODS: To gain insights into the molecular mechanisms of adaptation to GR, we utilized next-generation RNA sequencing (RNA-seq) to quantify the gene expression changes upon GR. Autophagy, a cytoprotective response to starvation, was monitored by using autophagy-specific staining, autophagy inhibition assay, and co-localization of autophagosomes with lysosomes. RESULTS: We demonstrated that GR promotes the survival of T. vaginalis. Besides, GR-cultivated cells exhibit higher H2O2 resistance. Our RNA-seq data revealed that genes involved in general energy metabolism were downregulated, whereas genes encoding glutamate metabolism-related aminotransferases were strikingly upregulated under GR. Furthermore, autophagy was first identified and characterized in T. vaginalis under GR. CONCLUSIONS: These data suggest that GR induces a metabolic reprogramming, enhancing antioxidant ability and autophagy for cellular homeostasis to maintain survival. GENERAL SIGNIFICANCE: Our work not only led to significant advances in understanding the transcriptional changes in response to GR but also provided possible strategies elicited by GR for T. vaginalis to adapt to the vaginal microenvironment.


Subject(s)
Adaptation, Physiological , Antioxidants/pharmacology , Autophagy , Biomarkers/metabolism , Energy Metabolism , Glucose/metabolism , Trichomonas vaginalis/metabolism , Blotting, Western , Cell Survival , Gene Expression Profiling , Glutamate Dehydrogenase/metabolism , Glycolysis , Hydrogen Peroxide/pharmacology , Oligonucleotide Array Sequence Analysis , Oxidants/pharmacology , Oxygen/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Trichomonas vaginalis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...