Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 15(10): 5450-5465, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38687305

ABSTRACT

Endoplasmic reticulum (ER) stress and chronic sterile inflammation are associated with the pathogenesis of diabetic nephropathy (DN). Catechins are natural polyphenolic compounds found in green tea that possess some health benefits. However, whether (+)-catechin can reduce tubular injury in DN by regulating ER stress and NLRP3-associated inflammation remains uncertain. This study examined the effects of (+)-catechin on streptozotocin (STZ)-induced diabetic mice and on palmitic acid (PA)-treated HK-2 cells. In vivo, a DN mouse model was generated by injecting STZ. The biochemical indicators of serum and urine, as well as renal histopathology and ultrastructure were analysed. To predict the mechanisms associated with (+)-catechin, network pharmacology and molecular docking were used. Finally, quantitative real-time PCR (qPCR), western blot analysis and immunofluorescence analysis were performed to measure the mRNA and protein expressions of specific targets in the renal tissue of DN mice and PA-treated HK-2 cells to validate the predicted results. (+)-Catechin significantly ameliorated renal function and pathological changes associated with tubular injury by inhibiting ER stress by downregulating of GRP78, PEAK, CHOP, ATF6 and XBP1. In addition, (+)-catechin inhibited renal inflammation by suppressing NLRP3 associated inflammation, which was characterized by the downregulation of NLRP3, ASC, AIM2, Caspase1, IL-1ß and IL-18 in DN mice and PA-treated HK-2 cells. Collectively, these findings suggested that (+)-catechin exerted a renoprotective effect against DN by inhibiting ER stress and NLRP3-related inflammation to ameliorate tubular injury, suggesting the therapeutic potential of (+)-catechin.


Subject(s)
Catechin , Diabetic Nephropathies , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Inflammation , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Endoplasmic Reticulum Stress/drug effects , Catechin/pharmacology , Mice , Male , Humans , Inflammation/drug therapy , Cell Line , Kidney/drug effects , Kidney/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...