Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Sci Total Environ ; 700: 134462, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31689649

ABSTRACT

Built-up land in floodplains (BLF) is a vital indicator of the socio-hydrological system, and its dynamics are key to understanding and managing flood risk. However, previous studies have neglected the impacts of BLF growth modes (e.g., patch sizes and expansion types) on flood vulnerability. This paper fills this gap by assessing the BLF's growth modes and revealing their divergent impacts on flood vulnerability using a case study in the Yangtze River Economic Belt (YREB), China. The results show that the BLF has nearly doubled in the YREB during 1990-2014. A considerable proportion (35.43%) of the BLF growth is scattered in small patches (≤1 km2), which have a much stronger correlation with flood occurrence than that of the other patch sizes. In terms of expansion types, the edge-expansion type dominates 57.52% of the BLF growth, followed by the leapfrogging and infilling expansions. Both the leapfrogging and the edge-expanding BLFs are significantly associated with flood occurrence, while the infilling type is not. The patch size and expansion type can thus influence the vulnerability of BLF patches, which is also supported by real-world cases. These findings enrich a general understanding of BLF growth and its impacts on flood vulnerability. The scientific community and policymakers should pay attention to not only the quantity of BLF growth, but also its spatial arrangement.

2.
Article in English | MEDLINE | ID: mdl-30060583

ABSTRACT

Although China suffers from frequent and disastrous floods, the spatiotemporal pattern of its population living in the floodplain (PopF) is still unknown. This strongly limits our understanding of flood risk and the effectiveness of mitigation efforts. Here we present the first quantification of Chinese PopF and its dynamics, based on newly-available population datasets for years 1990, 2000, 2010, and 2015 and on a flood map. We found that the PopF in 2015 was 453.3 million and accounted for 33.0% of the total population, with a population density 3.6 times higher than outside floodplains. From 1990 to 2015, the PopF increased by 1.3% annually, overwhelmingly faster than elsewhere (0.5%). A rising proportion (from 53.2% in 1990 to 55.6% in 2015) of the PopF resided in flood zones deeper than 2 m. Moreover, the PopF is expected to increase rapidly in the coming decades. We also found the effect of flood memory on controlling PopF growth and its decay over time. These findings imply an exacerbating flood risk in China, which is concerning in the light of climate change and rapid socioeconomic development.


Subject(s)
Floods , Population Growth , China , Climate Change , Disasters
3.
Ying Yong Sheng Tai Xue Bao ; 24(11): 3318-24, 2013 Nov.
Article in Chinese | MEDLINE | ID: mdl-24564165

ABSTRACT

Lysosome is an important organelle existing in eukaryotic cells. With the development of the study on the structure and function of lysosome in recent years, lysosome is considered as a target of toxic substances on subcellular level, and has been widely applied abroad in marine pollution monitoring. This paper summarized the biological characteristics of lysosomal marker enzyme, lysosome-autophagy system, and lysosomal membrane, and introduced the principles and methods of applying lysosomal detection in marine pollution monitoring. Bivalve shellfish digestive gland and fish liver are the most sensitive organs for lysosomal detection. By adopting the lysosomal detection techniques such as lysosomal membrane stability (LMS) test, neutral red retention time (NRRT) assay, morphological measurement (MM) of lysosome, immunohistochemical (Ih) assay of lysosomal marker enzyme, and electron microscopy (EM), the status of marine pollution can be evaluated. It was suggested that the lysosome could be used as a biomarker for monitoring marine environmental pollution. The advantages and disadvantages of lysosomal detection and some problems worthy of attention were analyzed, and the application prospects of lysosomal detection were discussed.


Subject(s)
Environmental Monitoring/methods , Lysosomes/drug effects , Lysosomes/metabolism , Seawater , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Bivalvia/physiology , Fishes/physiology , Lysosomes/physiology , Seawater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...