Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 528
Filter
1.
Lancet ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38824941

ABSTRACT

BACKGROUND: Anti-PD-1 therapy and chemotherapy is a recommended first-line treatment for recurrent or metastatic nasopharyngeal carcinoma, but the role of PD-1 blockade remains unknown in patients with locoregionally advanced nasopharyngeal carcinoma. We assessed the addition of sintilimab, a PD-1 inhibitor, to standard chemoradiotherapy in this patient population. METHODS: This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was conducted at nine hospitals in China. Adults aged 18-65 years with newly diagnosed high-risk non-metastatic stage III-IVa locoregionally advanced nasopharyngeal carcinoma (excluding T3-4N0 and T3N1) were eligible. Patients were randomly assigned (1:1) using blocks of four to receive gemcitabine and cisplatin induction chemotherapy followed by concurrent cisplatin radiotherapy (standard therapy group) or standard therapy with 200 mg sintilimab intravenously once every 3 weeks for 12 cycles (comprising three induction, three concurrent, and six adjuvant cycles to radiotherapy; sintilimab group). The primary endpoint was event-free survival from randomisation to disease recurrence (locoregional or distant) or death from any cause in the intention-to-treat population. Secondary endpoints included adverse events. This trial is registered with ClinicalTrials.gov (NCT03700476) and is now completed; follow-up is ongoing. FINDINGS: Between Dec 21, 2018, and March 31, 2020, 425 patients were enrolled and randomly assigned to the sintilimab (n=210) or standard therapy groups (n=215). At median follow-up of 41·9 months (IQR 38·0-44·8; 389 alive at primary data cutoff [Feb 28, 2023] and 366 [94%] had at least 36 months of follow-up), event-free survival was higher in the sintilimab group compared with the standard therapy group (36-month rates 86% [95% CI 81-90] vs 76% [70-81]; stratified hazard ratio 0·59 [0·38-0·92]; p=0·019). Grade 3-4 adverse events occurred in 155 (74%) in the sintilimab group versus 140 (65%) in the standard therapy group, with the most common being stomatitis (68 [33%] vs 64 [30%]), leukopenia (54 [26%] vs 48 [22%]), and neutropenia (50 [24%] vs 46 [21%]). Two (1%) patients died in the sintilimab group (both considered to be immune-related) and one (<1%) in the standard therapy group. Grade 3-4 immune-related adverse events occurred in 20 (10%) patients in the sintilimab group. INTERPRETATION: Addition of sintilimab to chemoradiotherapy improved event-free survival, albeit with higher but manageable adverse events. Longer follow-up is necessary to determine whether this regimen can be considered as the standard of care for patients with high-risk locoregionally advanced nasopharyngeal carcinoma. FUNDING: National Natural Science Foundation of China, Key-Area Research and Development Program of Guangdong Province, Natural Science Foundation of Guangdong Province, Overseas Expertise Introduction Project for Discipline Innovation, Guangzhou Municipal Health Commission, and Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.

2.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 73-77, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836679

ABSTRACT

GABBR1 receptors have been implicated in the progression of rheumatoid arthritis (RA), and p38 MAP kinase (MAPK) was shown to be downregulated by GABA and result in unchecked production of pro-inflammatory cytokine. GABBR1 is a member of GABA receptors, and it is known to be upregulated and plays a vital role in RA. Glucocorticoids are efficient therapeutics in rheumatoid arthritis (RA) and are known to regulate GABA actions; therefore, we intended to investigate the potential of glucocorticoids in RA concerning the potential pathway GABBR1/MAPK. Joint specimens were obtained from collagen-induced arthritis mouse model. A double-blind semi-quantitative analysis of vascularity, cell infiltration, as well as lining thickness by help of a 4-point scale setting was used to assess joint inflammation. Expression of GABBR1 and p38 was evaluated immunohistochemically. In vitro peripheral blood (PB), synovial fluid (SF), and mononuclear cells (MCs) were acquired from RA mice. Western blotting was used for detecting expression of GABBR1 and p38 proteins. The presence of high levels of GABBR1 and p38 was prevalent in RA joints relative to healthy joints and related to the inflammation level. Glucocorticoid treatment alters GABBR1 along with p38 protein expression in joints while reducing joint inflammation. Ex vivo and in vitro assays revealed glucocorticoids have a direct impact on p38, such as the decreased GABBR1 expression level after dexamethasone incubation with SFMC. GABBR1 together with p38 expression in RA joints depends on local inflammation and can be targeted by glucocorticoids.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Glucocorticoids , p38 Mitogen-Activated Protein Kinases , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Animals , Glucocorticoids/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Mice , Male , Joints/pathology , Joints/drug effects , Joints/metabolism , Mice, Inbred DBA , Synovial Fluid/metabolism , Synovial Fluid/drug effects , Cellular Microenvironment/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Disease Models, Animal
3.
J Med Chem ; 67(9): 7112-7129, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38647397

ABSTRACT

Research into kappa opioid receptor (KOR) agonists with attenuated central-nervous-system side effects is a critical focus for developing productive and safe analgesics. Herein, a series of ortho-substituted N-cyclopropylmethyl-7α-phenyl-6,14-endoethano-tetrahydronorthebaines were designed, synthesized, and subjected to bioassays. Compound 7a exhibited high subtype selectivity and potent agonistic activity toward KOR (KOR, Ki = 3.9 nM, MOR/KOR = 270, DOR/KOR = 1075; [35S]GTPγS binding, EC50 = 3.4 nM). Additionally, this compound exhibited robust and persistent antinociceptive effects in rodent models with different animal strains (hot plate test, ED50 = 0.20-0.30 mg/kg, i.p.; abdominal constriction test, ED50 = 0.20-0.60 mg/kg, i.p.), with its KOR-mediated mechanism for antinociception firmly established. Notably, compound 7a, unlike conventional KOR agonists, displayed minimal sedation and aversion at the antinociceptive ED50 dose. This feature addresses a crucial limitation in existing KOR agonists, positioning compound 7a as a promising novel therapeutic agent.


Subject(s)
Receptors, Opioid, kappa , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/metabolism , Animals , Mice , Structure-Activity Relationship , Male , Humans , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/chemical synthesis , Hypnotics and Sedatives/chemistry , Rats , Analgesics/pharmacology , Analgesics/chemical synthesis , Analgesics/chemistry , Drug Discovery , Rats, Sprague-Dawley , Cricetulus
4.
Arterioscler Thromb Vasc Biol ; 44(6): 1330-1345, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602103

ABSTRACT

BACKGROUND: CALCRL (calcitonin receptor-like) protein is an important mediator of the endothelial fluid shear stress response, which is associated with the genetic risk of coronary artery disease. In this study, we functionally characterized the noncoding regulatory elements carrying coronary artery disease that risks single-nucleotide polymorphisms and studied their role in the regulation of CALCRL expression in endothelial cells. METHODS: To functionally characterize the coronary artery disease single-nucleotide polymorphisms harbored around the gene CALCRL, we applied an integrative approach encompassing statistical, transcriptional (RNA-seq), and epigenetic (ATAC-seq [transposase-accessible chromatin with sequencing], chromatin immunoprecipitation assay-quantitative polymerase chain reaction, and electromobility shift assay) analyses, alongside luciferase reporter assays, and targeted gene and enhancer perturbations (siRNA and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) in human aortic endothelial cells. RESULTS: We demonstrate that the regulatory element harboring rs880890 exhibits high enhancer activity and shows significant allelic bias. The A allele was favored over the G allele, particularly under shear stress conditions, mediated through alterations in the HSF1 (heat shock factor 1) motif and binding. CRISPR deletion of rs880890 enhancer resulted in downregulation of CALCRL expression, whereas HSF1 knockdown resulted in a significant decrease in rs880890-enhancer activity and CALCRL expression. A significant decrease in HSF1 binding to the enhancer region in endothelial cells was observed under disturbed flow compared with unidirectional flow. CALCRL knockdown and variant perturbation experiments indicated the role of CALCRL in mediating eNOS (endothelial nitric oxide synthase), APLN (apelin), angiopoietin, prostaglandins, and EDN1 (endothelin-1) signaling pathways leading to a decrease in cell proliferation, tube formation, and NO production. CONCLUSIONS: Overall, our results demonstrate the existence of an endothelial-specific HSF (heat shock factor)-regulated transcriptional enhancer that mediates CALCRL expression. A better understanding of CALCRL gene regulation and the role of single-nucleotide polymorphisms in the modulation of CALCRL expression could provide important steps toward understanding the genetic regulation of shear stress signaling responses.


Subject(s)
Calcitonin Receptor-Like Protein , Coronary Artery Disease , Endothelial Cells , Enhancer Elements, Genetic , Polymorphism, Single Nucleotide , Stress, Mechanical , Humans , Endothelial Cells/metabolism , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Calcitonin Receptor-Like Protein/genetics , Calcitonin Receptor-Like Protein/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Mechanotransduction, Cellular , Cells, Cultured , Gene Expression Regulation , Protein Binding , Genetic Predisposition to Disease , Binding Sites
5.
Chem Biol Drug Des ; 103(3): e14459, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38538058

ABSTRACT

Diosgenin, a natural steroidal sapogenin, has recently attracted a high amount of attention, as an effective anticancer agent in ovarian cancer. However, diosgenin mediated anticancer impacts are still not completely understood. Thus, the present study evaluated the effect of diosgenin on the proliferation, apoptosis, and metastasis of ovarian cancer cells. OVCAR-3 and SKOV-3 cells were treated with diosgenin, cellular viability was assessed by MTT assay and apoptosis was measured by ELISA and evaluated the protein expression levels of apoptotic markers through western blotting. Cell migration was examined by measuring the mRNA levels of genes involved in the cell invasion. The protein expression levels of main components of PI3K signaling were evaluated via western blotting. Diosgenin led to significant inhibition of cellular proliferation in a dose-dependent manner. It also induced apoptosis through upregulating pro-apoptotic markers and downregulating antiapoptotic mediators. In addition, OVCAR-3 cells exposure to diosgenin decreased cell migration and invasion. More importantly, diosgenin downregulated the expression levels of main proteins in PI3K signaling including PI3K, Akt, mTOR, and GSK3. Diosgenin inhibited the proliferation and migration of OVCAR-3 ovarian cancer cells and induced apoptosis, which may be mediated by targeting PI3K signaling.


Subject(s)
Diosgenin , Ovarian Neoplasms , PTEN Phosphohydrolase , Female , Humans , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement , Cell Proliferation/drug effects , Diosgenin/pharmacology , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/pharmacology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , PTEN Phosphohydrolase/drug effects , PTEN Phosphohydrolase/metabolism , Up-Regulation
6.
BMC Pulm Med ; 24(1): 156, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539172

ABSTRACT

BACKGROUND: Chronic cough is a common symptom in patients post the coronavirus disease 2019 (COVID-19). In this study, we aimed to investigate the efficacy of inhaled corticosteroids (ICS) and the clinical characteristics of patients with post-COVID-19 chronic cough during the Omicron era. METHODS: An ambispective, longitudinal cohort study was conducted that included patients with post-COVID-19 who attended the respiratory clinic at our hospital between January 1, 2023, and March 31, 2023 with a complaint of persistent cough lasting more than 8 weeks. At 30 and 60 days after the first clinic visit for post-COVID-19 chronic cough, enrolled patients were prospectively followed up. We compared the changes in symptoms and pulmonary function between patients receiving ICS treatment (ICS group) and those not receiving ICS treatment (NICS group) at the two visits. RESULTS: A total of 104 patients with post-COVID-19 chronic cough were enrolled in this study (ICS group, n = 51; NICS group, n = 53). The most common symptoms accompanying post-COVID-19 chronic cough were sputum (58.7%, 61/104) and dyspnea (48.1%, 50/104). Seventy-one (82.6%, 71/86) patients had airway hyperresponsiveness, and 49 patients (47.1%, 49/104) were newly diagnosed with asthma. Most patients (95.2%, 99/104) exhibited improvement at 60 days after the first visit. The pulmonary function parameters of the patients in the ICS group were significantly improved compared to the baseline values (P < 0.05), and the improvement in the FEV1/FVC was significantly greater than that in the NICS group (P = 0.003) after 60 days. CONCLUSIONS: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) may contribute to the pathogenesis of asthma, which could be the underlying cause of persistent cough post-COVID-19 infection. Post-COVID-19 chronic cough during the Omicron era was often accompanied by sputum, dyspnea, and airway hyperresponsiveness. ICS treatment did not have a significant impact on symptom management of post-COVID-19 chronic cough; however, it can improve impaired lung function in in these individuals.


Subject(s)
Asthma , COVID-19 , Humans , Chronic Cough , Longitudinal Studies , COVID-19/complications , SARS-CoV-2 , Asthma/complications , Asthma/drug therapy , Adrenal Cortex Hormones/therapeutic use , Cough , Dyspnea/drug therapy , Administration, Inhalation
7.
bioRxiv ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38496521

ABSTRACT

Atherosclerosis is a chronic inflammatory disease associated with the accumulation of low-density lipoprotein (LDL) in arterial walls. Higher levels of the anti-inflammatory cytokine IL-10 in serum are correlated with reduced plaque burden. However, cytokine therapies have not translated well to the clinic, partially due to their rapid clearance and pleiotropic nature. Here, we engineered IL-10 to overcome these challenges by hitchhiking on LDL to atherosclerotic plaques. Specifically, we constructed fusion proteins in which one domain is IL-10 and the other is an antibody fragment (Fab) that binds to protein epitopes of LDL. In murine models of atherosclerosis, we show that systemically administered Fab-IL-10 constructs bind circulating LDL and traffic to atherosclerotic plaques. One such construct, 2D03-IL-10, significantly reduces aortic immune cell infiltration to levels comparable to healthy mice, whereas non-targeted IL-10 has no therapeutic effect. Mechanistically, we demonstrate that 2D03-IL-10 preferentially associates with foamy macrophages and reduces pro-inflammatory activation markers. This platform technology can be applied to a variety of therapeutics and shows promise as a potential targeted anti-inflammatory therapy in atherosclerosis.

8.
ACS Nano ; 18(14): 10031-10044, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38547360

ABSTRACT

The increasing demand for improving pesticide utilization efficiency has prompted the development of sustainable, targeted, and stimuli-responsive delivery systems. Herein, a multi-stimuli-responsive nano/microcapsule bidirectional delivery system loaded with pyraclostrobin (Pyr) is prepared through interfacial cross-linking from a lignin-based Pickering emulsion template. During this process, methacrylated alkali lignin nanoparticles (LNPs) are utilized as stabilizers for the tunable oil-water (O/W) Pickering emulsion. Subsequently, a thiol-ene radical reaction occurs with the acid-labile cross-linkers at the oil-water interface, leading to the formation of lignin nano/microcapsules (LNCs) with various topological shapes. Through the investigation of the polymerization process and the structure of LNC, it was found that the amphiphilicity-driven diffusion and distribution of cyclohexanone impact the topology of LNC. The obtained Pyr@LNC exhibits high encapsulation efficiency, tunable size, and excellent UV shielding to Pyr. Additionally, the flexible topology of the Pyr@LNC shell enhances the retention and adhesion of the foliar surface. Furthermore, Pyr@LNC exhibits pH/laccase-responsive targeting against Botrytis disease, enabling the intelligent release of Pyr. The in vivo fungicidal activity shows that efficacy of Pyr@LNC is 53% ± 2% at 14 days postspraying, whereas the effectiveness of Pyr suspension concentrate is only 29% ± 4%, and the acute toxicity of Pyr@LNC to zebrafish is reduced by more than 9-fold compared with that of Pyr technical. Moreover, confocal laser scanning microscopy shows that the LNCs can be bidirectionally translocated in plants. Therefore, the topology-regulated bidirectional delivery system LNC has great practical potential for sustainable agriculture.


Subject(s)
Lignin , Pesticides , Strobilurins , Animals , Lignin/chemistry , Pesticides/pharmacology , Capsules/chemistry , Emulsions/chemistry , Zebrafish , Water
9.
J Clin Oncol ; 42(17): 2021-2025, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38507662

ABSTRACT

Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.We previously reported comparable 3-year regional relapse-free survival (RRFS) using elective upper-neck irradiation (UNI) in N0-1 nasopharyngeal carcinoma (NPC) compared with standard whole-neck irradiation (WNI). Here, we present the prespecified 5-year overall survival (OS), RRFS, late toxicity, and additional analyses. In this randomized trial, patients received UNI (n = 224) or WNI (n = 222) for an uninvolved neck. After a median follow-up of 74 months, the UNI and WNI groups had similar 5-year OS (95.9% v 93.1%, hazard ratio [HR], 0.63 [95% CI, 0.30 to 1.35]; P = .24) and RRFS (95.0% v 94.9%, HR, 0.96 [95% CI, 0.43 to 2.13]; P = .91) rates. The 5-year disease-free survivors in the UNI group had a lower frequency of hypothyroidism (34% v 48%; P = .004), neck tissue damage (29% v 46%; P < .001), dysphagia (14% v 27%; P = .002), and lower-neck common carotid artery stenosis (15% v 26%; P = .043). The UNI group had higher postradiotherapy circulating lymphocyte counts than the WNI group (median: 400 cells/µL v 335 cells/µL, P = .007). In conclusion, these updated data confirmed that UNI of the uninvolved neck is a standard of care in N0-1 NPC, providing outstanding efficacy and reduced long-term toxicity, and might retain more immune function.


Subject(s)
Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Female , Male , Middle Aged , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/mortality , Adult , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/mortality , Aged , Neck
10.
Environ Sci Pollut Res Int ; 31(11): 17511-17523, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342835

ABSTRACT

The leaching of ionic rare earth elements has caused serious environmental pollution and ecological damage. Microorganisms play a crucial role in soil ecosystems and are one of the most important components of these systems. However, there are fewer studies related to the changes that occur in microbial community structure and diversity before and after leaching in ionic rare earth mines. In this study, Illumina high-throughput sequencing was used to examine the diversity and composition of soil microorganisms on the summit, hillside, and foot valley surfaces of unleached and leached mines after in situ leaching. The results showed that microbial diversity and abundance in the surface soil of the unleached mine were higher than those in the leached mine, and leaching had a significant impact on the microbial community of mining soil. pH was the main factor affecting the microbial community. Proteobacteria, Actinobacteriota, and Chloroflexi were phyla that showed high abundance in the soil. Network analysis showed that microbial interactions can improve microbial adaptation and stability in harsh environments. PICRUSt2 predictions indicate functional changes and linkages in soil microbial communities.


Subject(s)
Metals, Rare Earth , Microbiota , Soil Pollutants , Metals, Rare Earth/analysis , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis
11.
J Control Release ; 367: 837-847, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346502

ABSTRACT

Strawberry anthracnose (Colletotrichum gloeosporioides) exhibits a high pathogenicity, capable of directly infecting leaves through natural openings, resulting in devastating impacts on strawberries. Here, nanocomposite (CuS@Cu-MOF) was prepared with a high photothermal conversion efficiency of 35.3% and a strong response to near-infrared light (NIR) by locally growing CuS nanoparticles on the surface of a copper-based metal-organic framework (Cu-MOF) through in situ sulfurization. The porosity of Cu-MOF facilitated efficient encapsulation of the pesticide difenoconazole within CuS@Cu-MOF (DIF/CuS@Cu-MOF), achieving a loading potential of 19.18 ± 1.07%. Under NIR light irradiation, DIF/CuS@Cu-MOF showed an explosive release of DIF, which was 2.7 times higher than that under dark conditions. DIF/CuS@Cu-MOF exhibited a 43.9% increase in efficacy against C. gloeosporioides compared to difenoconazole microemulsion (DIF ME), demonstrating prolonged effectiveness. The EC50 values for DIF and DIF/CuS@Cu-MOF were 0.219 and 0.189 µg/mL, respectively. Confocal laser scanning microscopy demonstrated that the fluorescently labeled CuS@Cu-MOF acted as a penetrative carrier for the uptake of hyphae. Furthermore, DIF/CuS@Cu-MOF exhibited more substantial resistance to rainwater wash-off than DIF ME, with retention levels on the surfaces of cucumber leaves (hydrophilicity) and peanut leaves (hydrophobicity) increasing by 36.5-fold and 9.4-fold, respectively. These findings underscore the potential of nanocomposite to enhance pesticide utilization efficiency and leaf retention.


Subject(s)
Fragaria , Nanoparticles , Pesticides , Copper , Infrared Rays
12.
J Cell Biol ; 223(3)2024 03 04.
Article in English | MEDLINE | ID: mdl-38231044

ABSTRACT

Vascular homeostasis and pathophysiology are tightly regulated by mechanical forces generated by hemodynamics. Vascular disorders such as atherosclerotic diseases largely occur at curvatures and bifurcations where disturbed blood flow activates endothelial cells while unidirectional flow at the straight part of vessels promotes endothelial health. Integrated analysis of the endothelial transcriptome, the 3D epigenome, and human genetics systematically identified the SNP-enriched cistrome in vascular endothelium subjected to well-defined atherosclerosis-prone disturbed flow or atherosclerosis-protective unidirectional flow. Our results characterized the endothelial typical- and super-enhancers and underscored the critical regulatory role of flow-sensitive endothelial super-enhancers. CRISPR interference and activation validated the function of a previously unrecognized unidirectional flow-induced super-enhancer that upregulates antioxidant genes NQO1, CYB5B, and WWP2, and a disturbed flow-induced super-enhancer in endothelium which drives prothrombotic genes EDN1 and HIVEP in vascular endothelium. Our results employing multiomics identify the cis-regulatory architecture of the flow-sensitive endothelial epigenome related to atherosclerosis and highlight the regulatory role of super-enhancers in mechanotransduction mechanisms.


Subject(s)
Atherosclerosis , Endothelial Cells , Mechanotransduction, Cellular , Humans , Atherosclerosis/genetics , Endothelium, Vascular
13.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L111-L123, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38084409

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-ß (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes the transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel anoctamin-1 (ANO1) in human lung fibroblasts (HLFs) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle α-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1, and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate profibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLFs results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that 1) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and 2) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein but independent of WNK1 kinase activity.NEW & NOTEWORTHY This study describes a novel mechanism of differentiation of human lung fibroblasts (HLFs) to myofibroblasts: the key process in the pathogenesis of pulmonary fibrosis. Transforming growth factor-ß (TGF-ß) drives the expression of calcium-activated chloride channel anoctmin-1 (ANO1) leading to an increase in intracellular levels of chloride. The latter recruits chloride-sensitive with-no-lysine (K) kinase (WNK1) to activate profibrotic RhoA and AKT signaling pathways, possibly through activation of mammalian target of rapamycin complex-2 (mTORC2), altogether promoting myofibroblast differentiation.


Subject(s)
Idiopathic Pulmonary Fibrosis , Myofibroblasts , Humans , Anoctamin-1/metabolism , Cell Differentiation , Chlorides/metabolism , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Myofibroblasts/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factors/metabolism , Transforming Growth Factors/pharmacology
14.
medRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-37873251

ABSTRACT

Background: Early host immunity to acute respiratory infections (ARIs) is heterogenous, dynamic, and critical to an individual's infection outcome. Due to limitations in sampling frequency/timepoints, kinetics of early immune dynamics in natural human infections remain poorly understood. In this nationwide prospective cohort study, we leveraged a self-blood collection tool (homeRNA) to profile detailed kinetics of the pre-symptomatic to convalescence host immunity to contemporaneous respiratory pathogens. Methods: We enrolled non-symptomatic adults with recent exposure to ARIs who subsequently tested negative (exposed-uninfected) or positive for respiratory pathogens. Participants self-collected blood and nasal swabs daily for seven consecutive days followed by weekly blood collection for up to seven additional weeks. Symptom burden was assessed during each collection. Nasal swabs were tested for SARS-CoV-2 and common respiratory pathogens. 92 longitudinal blood samples spanning the pre-shedding to post-acute phase of eight SARS-CoV-2-infected participants and 40 interval-matched samples from four exposed-uninfected participants were subjected to high-frequency longitudinal profiling of 773 host immune genes. Findings: Between June 2021 - April 2022, 68 participants across 26 U.S. states completed the study and self-collected a total of 691 and 466 longitudinal blood and nasal swab samples along with 688 symptom surveys. SARS-CoV-2 was detected in 17 out of 22 individuals with study-confirmed respiratory infection. With rapid dissemination of home self-collection kits, two and four COVID-19+ participants started collection prior to viral shedding and symptom onset, respectively, enabling us to profile detailed expression kinetics of the earliest blood transcriptional response to contemporaneous variants of concern. In pre-shedding samples, we observed transient but robust expression of T-cell response signatures, transcription factor complexes, prostaglandin biosynthesis genes, pyrogenic cytokines, and cytotoxic granule genes. This is followed by a rapid induction of many interferon-stimulated genes (ISGs), concurrent to onset of viral shedding and increase in nasal viral load. Finally, we observed increased expression of host defense peptides (HDPs) in exposed-uninfected individuals over the 4-week observational window. Interpretation: We demonstrated that unsupervised self-collection and stabilization of capillary blood can be applied to natural infection studies to characterize detailed early host immune kinetics at a temporal resolution comparable to that of human challenge studies. The remote (decentralized) study framework enables conduct of large-scale population-wide longitudinal mechanistic studies. Expression of cytotoxic/T-cell signatures in pre-shedding samples preceding expansion of innate ISGs suggests a potential role for T-cell mediated pathogen control during early infection. Elevated expression of HDPs in exposed-uninfected individuals warrants further validation studies to assess their potential role in protective immunity during pathogen exposure. Funding: This study was funded by R35GM128648 to ABT for in-lab developments of homeRNA, Packard Fellowship from the David and Lucile Packard Foundation to ABT, and R01AI153087 to AW.

15.
Small ; 20(8): e2305693, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37828638

ABSTRACT

The development of effective multifunctional nano-delivery approaches for pesticide absorption remains a challenge. Here, a dextran-based pesticide delivery system (MBD) is constructed to deliver tebuconazole for multidimensionally enhancing its effective utilization on tomato plants. Spherical MBD nanoparticles are obtained through two-step esterification of dextran, followed by tebuconazole loading using the Michael addition reaction. Confocal laser scanning microscopy shows that fluorescein isothiocyanate-labeled MBD nanoparticles can be bidirectionally transported in tomato plants and a modified quick, easy, cheap, effective, rugged, and safe-HPLC approach demonstrates the capacity to carry tebuconazole to plant tissues after 24 h of root uptake and foliar spray, respectively. Additionally, MBD nanoparticles could increase the retention of tebuconazole on tomato leaves by up to nearly 2.1 times compared with the tebuconazole technical material by measuring the tebuconazole content retained on the leaves. In vitro antifungal and pot experiments show that MBD nanoparticles improve the inhibitory effect of tebuconazole against botrytis cinerea by 58.4% and the protection against tomato gray molds by 74.9% compared with commercial suspensions. Furthermore, the MBD nanoparticles do not affect the healthy growth of tomato plants. These results underline the potential for the delivery system to provide a strategy for multidimensional enhancement of pesticide efficacy.


Subject(s)
Pesticides , Solanum lycopersicum , Dextrans , Plants
16.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L19-L28, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37987758

ABSTRACT

Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.


Subject(s)
Asthma , Glial Cell Line-Derived Neurotrophic Factor , Animals , Mice , Allergens , Collagen , Disease Models, Animal , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Methacholine Chloride/pharmacology , Mice, Inbred C57BL , Proto-Oncogene Proteins c-ret/metabolism
17.
Sci Total Environ ; 912: 169243, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38101649

ABSTRACT

Trivalent lanthanum (La3+) exists widely in ammonia nitrogen (NH4+-N) tailing water from ionic rare earth mines; however, its effect on heterotrophic nitrification-aerobic denitrification (HN-AD) is unknown, thereby limiting the application of the HN-AD process in this field. In this study, we conducted an HN-AD process using a sequencing batch reactor (5 L) that was continuously operated to directly treat acidic (NH4)2SO4 wastewater (influent NH4+-N concentration of approximately 110 mg/L and influent pH of 5) containing different La3+ concentrations (0-100 mg/L). The NH4+-N removal efficiency of the reactor reached 98.25 % at a La3+ concentration of 100 mg/L. The reactor was in a neutral-to-alkaline environment, which favored La3+ precipitation and complexation. Metagenomic analysis revealed that the relative abundance of Thauera in the reactor remained high (88.62-92.27 %) under La3+ stress. The relative abundances of Pannonobacter and Hyphomonas significantly increased, whereas that of Azoarcus significantly decreased. Metabolic functions in the reactor were mainly contributed by Thauera, and the abundance of metabolic functions under low La3+ stress (≤5 mg/L) significantly differed from that under high La3+ stress (≥10 mg/L). The relative abundance of ammonia assimilation-related genes in the reactor was high and significantly correlated with ammonia removal. However, traditional ammonia oxidation genes were not annotated, and unknown ammonia oxidation pathways may have been present in the reactor. Moreover, La3+ stimulated amino acid biosynthesis and translocation, the citrate cycle, sulfur metabolism, and oxidative phosphorylation and promoted the overproduction of extracellular polymeric substances, which underwent complexation and adsorbed La3+ to reduce its toxicity. Our results showed that the HN-AD process had a strong tolerance to La3+, stable NH4+-N removal efficiency, the potential to recover La3+, and considerable application prospects in treating NH4+-N tailing water from ionic rare earth mines.


Subject(s)
Microbiota , Nitrification , Denitrification , Ammonia/metabolism , Bioreactors , Heterotrophic Processes , Nitrogen/analysis , Metabolic Networks and Pathways , Water
18.
iScience ; 26(12): 108394, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38047064

ABSTRACT

To guide individualized intensity-modulated radiotherapy (IMRT), we developed and prospectively validated a multiview radiomics risk model for predicting radiation-induced hypothyroidism in patients with nasopharyngeal carcinoma. And simulated radiotherapy plans with same dose-volume-histogram (DVH) but different dose distributions were redesigned to explore the clinical application of the multiview radiomics risk model. The radiomics and dosiomics were built based on selected radiomics and dosiomics features from planning computed tomography and dose distribution, respectively. The multiview radiomics risk model that integrated radiomics, dosiomics, DVH parameters, and clinical factors had better performance than traditional normal tissue complication probability models. And multiview radiomics risk model could identify differences of patient hypothyroidism-free survival that cannot be stratified by traditional models. Besides, two redesigned simulated plans further verified the clinical application and advantage of the multiview radiomics risk model. The multiview radiomics risk model was a promising method to predict radiation-induced hypothyroidism and guide individualized IMRT.

20.
ACS Appl Mater Interfaces ; 15(47): 55163-55173, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37967306

ABSTRACT

Advancements in intelligent robots and human-machine interaction necessitate a shift in artificial skins toward multimodal perception. Dual-responsive skins that can detect proximity and pressure information are significant to establishing continuous sensing of interaction processes and extending interactive application scenarios. To address the current limitations of inadequate dual-mode performance, such as limited proximal response change and low tactile sensitivity, this paper presents a bioinspired complementary gradient architecture-enabled (CGA) transduction design and a high-performance dual-responsive skin based on coplanar square-loop electrodes. Through systematic investigation into the transduction of various electrode configurations, comparative results reveal the remarkable potential of coplanar electrodes to deliver superior dual-mode performance without compromise. Simulations and experiments prove that the proposed CGA response mechanism can capture local interface deformation and overall compression signals, further enhancing response sensitivity. The final developed artificial skin is sensitive to external pressure and the approach of objects simultaneously, exhibiting a long detection distance (∼40 mm), a high proximity response (>0.4), and outstanding touch sensitivity (0.131 kPa-1). Furthermore, we demonstrate proof-of-concept applications for the proposed sensing skin in a dual-mode teleoperation interface and adaptive grasping interactions.


Subject(s)
Skin, Artificial , Skin , Humans , Touch , Electrodes , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...