Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 128(5): 2104-2115, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29664018

ABSTRACT

Immune checkpoint blockade (ICB) has demonstrated curative potential in several types of cancer, but only for a small number of patients. Thus, the identification of reliable and noninvasive biomarkers for predicting ICB responsiveness is an urgent unmet need. Here, we show that ICB increased tumor vessel perfusion in treatment-sensitive EO771 and MMTV-PyVT breast tumor as well as CT26 and MCA38 colon tumor models, but not in treatment-resistant MCaP0008 and 4T1 breast tumor models. In the sensitive tumor models, the ability of anti-cytotoxic T lymphocyte-associated protein 4 or anti-programmed cell death 1 therapy to increase vessel perfusion strongly correlated with its antitumor efficacy. Moreover, globally enhanced tumor vessel perfusion could be detected by Doppler ultrasonography before changes in tumor size, which predicted final therapeutic efficacy with more than 90% sensitivity and specificity. Mechanistically, CD8+ T cell depletion, IFN-γ neutralization, or implantation of tumors in IFN-γ receptor knockout mice abrogated the vessel perfusion enhancement and antitumor effects of ICB. These results demonstrated that ICB increased vessel perfusion by promoting CD8+ T cell accumulation and IFN-γ production, indicating that increased vessel perfusion reflects the successful activation of antitumor T cell immunity by ICB. Our findings suggest that vessel perfusion can be used as a novel noninvasive indicator for predicting ICB responsiveness.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Colonic Neoplasms , Lymphocyte Depletion , Mammary Neoplasms, Experimental , Perfusion , Animals , CD8-Positive T-Lymphocytes/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Colonic Neoplasms/therapy , Interferon-gamma/genetics , Interferon-gamma/metabolism , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/therapy , Mice
2.
Oncotarget ; 8(33): 54173-54186, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28903332

ABSTRACT

The immunosuppressive tumor microenvironment is a key obstacle to hinder a cancer immunotherapy. Myeloid-derived suppressor cells (MDSCs) have been considered as a major player in immunosuppression. In this study, we find that tumor-infiltrating MDSCs (tiMDSCs) are less immunosuppressive than tumor-associated macrophages (TAMs) in multiple murine orthotopic breast tumor models. Compared to TAMs, tiMDSCs produce higher levels of pro-inflammatory factors and lower levels of anti-inflammatory factors. Furthermore, tiMDSCs are preferentially located in hypoxic areas and are more pro-angiogenic than TAMs. Consistent with these functional disparities, a shift from tiMDSCs to TAMs is observed during the progression of breast cancer. Moreover, infiltration of tiMDSCs is also noted in distal colonization of breast cancer cells in the lung. Taken together, our findings indicate that tiMDSCs are more pro-angiogenic and promote tumor initiation, while TAMs are more immunosuppressive and facilitate tumor immune evasion. This study suggests that selectively targeting on TAMs could alleviate the immunosuppressive tumor microenvironment and potentiate cancer immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...