Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Nutrients ; 16(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38931307

ABSTRACT

Chronic stress (CS) endangers the physical and mental health of adolescents. Therefore, alleviating and preventing such negative health impacts are a top priority. This study explores the effect of feeding shrimp head hydrolysate (SHH) on gut microbiota, short-chain fatty acids (SCFAs), and neurotransmitters in growing C57BL/6 mice subjected to chronic unpredictable mild stress. Mice in the model group and three SHH groups were exposed to CS for 44 days, distilled water and SHH doses of 0.18, 0.45, 0.90 g/kg·BW were given respectively by gavage daily for 30 days from the 15th day. The results showed that SHH can significantly reverse depression-like behaviour, amino acids degradation, α diversity and ß diversity, proportion of Firmicutes and Bacteroidota, abundance of genera such as Muribaculaceae, Bacteroides, Prevotellaceae_UCG-001, Parabacteroides and Alistipes, concentration of five short-chain fatty acids (SCFAs), 5-HT and glutamate induced by CS. Muribaculaceae and butyric acid may be a controlled target. This study highlights the potential and broad application of SHH as an active ingredient in food to combat chronic stress damage.


Subject(s)
Depression , Fatty Acids, Volatile , Gastrointestinal Microbiome , Mice, Inbred C57BL , Stress, Psychological , Animals , Gastrointestinal Microbiome/drug effects , Mice , Fatty Acids, Volatile/metabolism , Male , Behavior, Animal/drug effects , Disease Models, Animal
2.
Mar Drugs ; 22(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38921597

ABSTRACT

Cadmium (Cd) is a toxic heavy metal that causes nephrosis, including acute kidney injury. To prevent and treat acute kidney injury (AKI) following Cd exposure, a tripeptide, Ser-Arg-Pro (SRP), from Sipunculus nudus L. was employed, and its potential efficacy in AKI was assessed. Oral administration of SRP significantly alleviated Cd-induced kidney damage, leading to improved renal function and the attenuation of structural abnormalities. A network pharmacology analysis revealed the potential of SRP in renal protection by targeting various pathways, including mitogen-activated protein kinase (MAPK) signaling, inflammatory response, and apoptosis pathways. Mechanistic studies indicated that SRP achieves renal protection by inhibiting the activation of MAPK pathways (phosphorylation of p38, p56, ERK, and JNK) in the oxidative stress cascade, suppressing inflammatory responses (iNOS, Arg1, Cox2, TNF-α, IL-1ß, and IL-6), and restoring altered apoptosis factors (caspase-9, caspase-3, Bax, and Bcl-2). Hence, SRP has the potential to be used as a therapeutic agent for the treatment of Cd-induced nephrotoxicity.


Subject(s)
Acute Kidney Injury , Apoptosis , Cadmium , Oligopeptides , Oxidative Stress , Animals , Acute Kidney Injury/drug therapy , Acute Kidney Injury/chemically induced , Apoptosis/drug effects , Mice , Cadmium/toxicity , Oxidative Stress/drug effects , Male , Oligopeptides/pharmacology , MAP Kinase Signaling System/drug effects , Kidney/drug effects , Kidney/pathology , Inflammation/drug therapy , Disease Models, Animal , Network Pharmacology
3.
Microorganisms ; 12(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38930592

ABSTRACT

Previous reports have mainly investigated the long-term effects (>30 d), such as gut microbiota dysbiosis and systemic low-grade inflammation, in mice fed fried oil. However, short-term intake of deep-fried oil is more likely to occur in daily life, and such studies are lacking. This study aimed to investigate the short-term effects of fried oil intake on systemic low-grade inflammation. Male Kunming mice were fed non-fried soybean oil or low (25%), medium (50%), or high (100%)-fried oil at 4.4 g/kg for 6 d. Serum and fecal samples were collected on day 7. In all groups fed fried oil, the serum levels of tumor necrosis factor (TNF-α) were significantly elevated 2-4-fold. Among the gut microbiota, the abundance of Alloprevotella significantly decreased by up to 76%, while Lactobacilli significantly increased by up to 385%. The fecal valeric acid content was significantly increased and positively correlated with TNF-α levels. Both valeric acid and TNF-α levels were positively correlated with the abundance of Lactobacilli and negatively correlated with that of Alloprevotella. In summary, a short-term ingestion of even low doses of fried oil alters the gut microbiota Alloprevotella and Lactobacilli and increases fecal valeric acid content, which correlates with increased serum TNF-α levels.

4.
Microorganisms ; 12(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674776

ABSTRACT

Pickled cabbage, a traditional fermented food rich in functional microorganisms, can effectively control hyperuricemia and gout. In this study, a Priestia megaterium ASC-1 strain with strong uric acid (UA) degradation ability was isolated from pickled cabbage. After oral administration for 15 days, ASC-1 was stably colonized in the rats in this study. ASC-1 significantly reduced UA levels (67.24%) in hyperuricemic rats. Additionally, ASC-1 alleviated hyperuricemia-related inflammatory response, oxidative stress, and blood urea nitrogen. Intestinal microbial diversity results showed that ASC-1 restored intestinal injury and gut flora dysbiosis caused by hyperuricemia. These findings suggest that P. megaterium ASC-1 may be used as a therapeutic adjuvant for the treatment of hyperuricemia.

5.
Heliyon ; 10(5): e26980, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463779

ABSTRACT

In this study, we have developed a novel fluorescent "OFF-ON" quantum dots (QDs) sensor based on CdTe/CdS/SiO2 cores. Ammonium pyrrolidine dithiocarbamate (APDC), ethylenediamine tetraacetic acid (EDTA), and 1,10-phenanthroline (Phen) served as potential chemical etchants. Among these three etchants, APDC exhibited the most pronounced quenching effect (94.06%). The APDC-etched CdTe/CdS/SiO2 QDs demonstrated excellent optical properties: the fluorescence of the APDC-etched CdTe/CdS/SiO2 QDs system (excitation wavelength: 365 nm and emission wavelength: 622 nm) was significantly and selectively restored upon the addition of cadmium ions (Cd2+) (89.22%), compared to 15 other metal ions. The linear response of the APDC-etched CdTe/CdS/SiO2 QDs was observed within the cadmium ion (Cd2+) concentration ranges of 0-20 µmol L-1 and 20-160 µmol L-1 under optimized conditions (APDC: 300 µmol L-1, pH: 7.0, reaction time: 10 min). The detection limit (LOD) of the APDC-etched CdTe/CdS/SiO2 QDs for Cd2+ was 0.3451 µmol L-1 in the range of 0-20 µmol L-1. The LOD achieved by the QDs in this study surpasses that of the majority of previously reported nanomaterials. The feasibility of using APDC-etched CdTe/CdS/SiO2 QDs for Cd2+ detection in seawater, freshwater, and milk samples was verified, with average recoveries of 95.27%-110.68%, 92%-106.47%, and 90.73%-111.60%, respectively, demonstrating satisfactory analytical precision (RSD ≤ 8.26).

6.
Foods ; 13(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38540843

ABSTRACT

Polysaccharides are functional foods or drugs that can be used to alleviate heavy metal poisoning by cadmium, lead, mercury, and arsenic. Industries generate substantial quantities of toxic heavy metal wastes, such as wastewater discharges, paints, electronic waste, batteries, pigments, and plastics, into the environment that pose a risk to human health. Therefore, it is imperative to eliminate accumulated heavy metal ions from the body and the environment. Heavy metal toxicity can lead to decreased energy levels and impair the functioning of vital organs, such as the brain, lungs, kidneys, liver, and blood. Prolonged exposure can result in progressive physical, muscular, and neurological degeneration that resembles conditions such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and muscular dystrophy. Polysaccharides operate through mechanisms such as chelation, antioxidant defense, immunomodulation, and tissue repair. Polysaccharides involved in heavy metal removal include methionine and cysteine, together with N-acetylcysteine, an acetylated form of cysteine, S-adenosylmethionine, a metabolite of methionine, α-lipoic acid, and the tripeptide glutathione (GSH). These compounds effectively bind with harmful heavy metals to create a stable complex and defend biological targets from metal ions, thus decreasing their harmful effects and causing them to be excreted from the body. This review also highlights the importance of polysaccharides' ability to mitigate oxidative stress, enhance immune responses, and support tissue repair processes. Polysaccharides are ubiquitous in nature and take part in diverse processes, making them potential natural therapies for heavy metal-related diseases. This review discusses the effectiveness of natural polysaccharides and the mechanisms that allow them to bind with heavy metals to alleviate their effects from the body and the environment. Polysaccharides have inherent features that enable them to function as pharmacological agents and regulate the immune response.

7.
Nutrients ; 16(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38257155

ABSTRACT

Elephantopus scaber L. (ESL) is a Chinese herb that is used both as a food and medicine, often being added to soups in summer in south China to relieve heat stress (HS), but its exact mechanism of action is unknown. In this study, heat-stressed mice were gavaged with ESL polysaccharides (ESLP) at 0, 150, 300, and 450 mg/kg/d-1 (n = 5) for seven days. The gut microbiota composition, short-chain fatty acids (SCFAs), seven neurotransmitters in faeces, expression of intestinal epithelial tight junction (TJ) proteins (Claudin-1, Occludin), and serum inflammatory cytokines were measured. The low dose of ESLP (ESLL) improved the adverse physiological conditions; significantly reduced the cytokines (TNF-α, IL-1ß, IL-6) and lipopolysaccharide (LPS) levels (p < 0.05); upregulated the expression of Claudin-1; restored the gut microbiota composition including Achromobacter and Oscillospira, which were at similar levels to those in the normal control group; significantly increased beneficial SCFAs like butyric acid and 5-HT levels in the faeces of heat-stressed mice; and significantly decreased the valeric acid and glutamic acid level. The level of inflammatory markers significantly correlated with the above-mentioned indicators (p < 0.05). Thus, ESLL reduced the HS-induced systemic inflammation by optimizing gut microbiota (Achromobacter, Oscillospira) abundance, increasing gut beneficial SCFAs like butyric acid and 5-HT levels, and reducing gut valeric and glutamic acid levels.


Subject(s)
Asteraceae , Gastrointestinal Microbiome , Heat Stress Disorders , Animals , Mice , Claudin-1 , Serotonin , Polysaccharides/pharmacology , Butyric Acid , Cytokines , Glutamic Acid
8.
Food Res Int ; 175: 113747, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128997

ABSTRACT

Multi-functional packaging materials are an important development for food preservation. Emulsion electrospinning is a novel and simple method that can be used to prepare multi-functional packaging materials, which can effectively protect the loaded active substances during the preparation process. In this study, PCL/lecithin/bacteriocin CAMT6 nanofiber films with antimicrobial and antioxidant activity were prepared by emulsion electrostatic spinning. The morphology and homogeneity of the prepared nanofibrous membranes could be improved by optimising the formulation of the emulsion for electrospinning. Analytical testing of the prepared nanofiber films revealed that the nanofibers had a core-shell structure, with bacteriocin CAMT6 effectively encapsulated in the core layer and the PCL and phospholipids homogeneously mixed to form the shell layer. Additionally, the nanofiber films had acceptable tensile properties and water absorption capacity. In chilled salmon meat, the nanofiber film effectively inhibited the growth of bacteria, slowed the oxidation of oil and slowed water loss, which was a good protective effect. This study provides a reference for the encapsulation application of food-active packaging materials and bacteriocins.


Subject(s)
Anti-Infective Agents , Bacteriocins , Nanofibers , Animals , Bacteriocins/pharmacology , Antioxidants/pharmacology , Nanofibers/chemistry , Lecithins , Emulsions , Salmon , Water
9.
J Hazard Mater ; 459: 132218, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37552922

ABSTRACT

Aflatoxin B1 (AFB1) is the most potent known naturally occurring carcinogen and pose an immense threat to food safety and human health. L-Cysteine hydrochloride (L-CH) is a food additive often used as a fruit and vegetable preservative and also to approved bread consistency. In this study, we investigated the effects and mechanisms of L-CH as an antimicrobial on the growth of Aspergillus flavus (A. flavus) and AFB1 biosynthesis. L-CH significantly inhibited A. flavus mycelial growth, affected mycelial morphology and AFB1 synthesis. Furthermore, L-CH induced glutathione (GSH) synthesis which scavenged intracellular reactive oxygen species (ROS). RNA-Seq indicated that L-CH inhibited hyphal branching, and spore and sclerotia formation by controlling cell wall and spore development-related genes. Activation of the GSH metabolic pathway eliminated intracellular ROS, leading to hyphal dwarfing. L-CH treatment downregulated most of the Aflatoxin (AF) cluster genes and aflS, aflR, AFLA_091090 transcription factors. This study provides new insights into the molecular mechanism of L-CH control of A. flavus and AFB1 foundation. We believe that L-CH could be used as a food additive to control AFB1 in foods and also in the environment.


Subject(s)
Antioxidants , Aspergillus flavus , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Cysteine/pharmacology , Cysteine/metabolism , Reactive Oxygen Species/metabolism , Aflatoxin B1/analysis , Glutathione/metabolism , Food Additives
10.
Sci Total Environ ; 900: 165850, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37516178

ABSTRACT

As one of the most accumulative toxic heavy metals, cadmium (Cd) poses a major threat to human health. Bacterial siderophores, as small molecules with metal-absorbing ability, have great potential activity for Cd-reduction. In this study, the siderophore-producing bacterialstrain FCH-CR2 was isolated from a high-Cd contaminated soil using the CAS method. Leclercia adecarboxylata was identified through 16S rRNA sequence, homology analysis, colony morphology, physiological and biochemical tests. A siderophore, catechol type 2,3-dihydroxy-N-benzoyl-l-serine (DHBS) secreted by FCH-CR2, was purified using RP-HPLC and identified by LC-MS/MS. Intraperitoneal injection of DHBS significantly increased fecal Cd levels, and reduced Cd accumulation in organs. In density flooding theory (DFT) analysis, DHBS may bind to Cd via the hydroxyl site on the benzene ring. Besides, the isothermal titration calorimetry (ITC) assay revealed that the formation of Cd-DHBS is a spontaneous and endothermic reaction with ΔG = -21.4 kJ/mol and ΔH = 1.51 ± 0.142 kJ/mol.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Siderophores/analysis , Siderophores/metabolism , Cadmium/analysis , RNA, Ribosomal, 16S/genetics , Chromatography, Liquid , Tandem Mass Spectrometry , Chelating Agents , Soil Pollutants/analysis , Soil/chemistry , Metals, Heavy/analysis
11.
Molecules ; 28(10)2023 May 21.
Article in English | MEDLINE | ID: mdl-37241957

ABSTRACT

As a common harmful pollutant, cadmium (Cd) can easily enter the human body through the food chain, posing a major threat to human health. Gut microbiota play a key role in Cd absorption. Docosahexaenoic acid (DHA) is thought to have a potential role in the treatment of Cd poisoning. This study investigated the therapeutic effect and mechanism of DHA in Cd-exposed mice from the perspective of the gut microbiota. The results showed that DHA significantly increased the Cd content in feces and decreased the Cd accumulation in the organs of mice. The gut microbiota results showed that DHA significantly restored the abundance of Parabacteroides in the gut microbiota of Cd-exposed mice. Parabacteroides distasonis (P. distasonis), a representative strain of the Parabacteroides, also showed Cd- and toxicity-reduction capabilities. P. distasonis significantly restored the gut damage caused by Cd exposure. At the same time, P. distasonis reduced the Cd content in the liver, spleen, lung, kidneys, gut, and blood to varying degrees and significantly increased the Cd content in feces. The succinic acid produced by P. distasonis plays an important role in promoting Cd excretion in Cd-exposed mice. Therefore, these results suggest that P. distasonis may have a potential role in DHA-mediated Cd excretion in Cd-exposed mice.


Subject(s)
Body Fluids , Gastrointestinal Microbiome , Humans , Animals , Mice , Cadmium/toxicity , Docosahexaenoic Acids/pharmacology , Feces
12.
Nutrients ; 15(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36904069

ABSTRACT

Systemic low-grade inflammation induced by unhealthy diet has become a common health concern as it contributes to immune imbalance and induces chronic diseases, yet effective preventions and interventions are currently unavailable. The Chrysanthemum indicum L. flower (CIF) is a common herb with a strong anti-inflammatory effect in drug-induced models, based on the theory of "medicine and food homology". However, its effects and mechanisms in reducing food-induced systemic low-grade inflammation (FSLI) remain unclear. This study showed that CIF can reduce FSLI and represents a new strategy to intervene in chronic inflammatory diseases. In this study, we administered capsaicin to mice by gavage to establish a FSLI model. Then, three doses of CIF (7, 14, 28 g·kg-1·day-1) were tested as the intervention. Capsaicin was found to increase serum TNF-α levels, demonstrating a successful model induction. After a high dose of CIF intervention, serum levels of TNF-α and LPS were reduced by 62.8% and 77.44%. In addition, CIF increased the α diversity and number of OTUs in the gut microbiota, restored the abundance of Lactobacillus and increased the total content of SCFAs in the feces. In summary, CIF inhibits FSLI by modulating the gut microbiota, increasing SCFAs levels and inhibiting excessive LPS translocation into the blood. Our findings provided a theoretical support for using CIF in FSLI intervention.


Subject(s)
Chrysanthemum , Gastrointestinal Microbiome , Plant Extracts , Animals , Mice , Capsaicin/pharmacology , Fatty Acids, Volatile , Flowers , Inflammation , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha , Plant Extracts/pharmacology
13.
Foods ; 12(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36981204

ABSTRACT

Fusarium oxysporum (F. oxysporum) is a common contaminant of dried fish, and the T-2 synthesis by this organism in dried fish products poses a serious public health risk. In this study, we investigated the effects of iturin A, a cyclic lipopeptide produced by Bacillus subtilis, on the growth and synthesis of the T-2 toxin of F. oxysporum, and transcriptomics was conducted. Results showed that the inhibitory effect of iturin A on F. oxysporum was significantly enhanced with an increase in iturin A concentrations. More specifically, compared with the control group, all indexes in the iturin A treatment group with 50 µg/mL were decreased to 24.84 mm, 0.33 × 106 cfu/mL, and 5.86 ng/mL for the colony diameter, number of spores, and concentration of T-2 toxin, respectively. Furthermore, iturin A was proven to destroy the integrity of cell membranes and cause a significant increase in ROS at 25 µg/mL or 50 µg/mL. Transcriptomic analysis revealed that with the treatment of iturin A, the genes of the oxidation-reduction process were up-regulated, while the gene expression of mycelial growth, cell integrity, transmembrane transport, energy metabolism, and others were down-regulated. More importantly, the Tri5 gene cluster was significantly inhibited. This study provided new insights into the mechanism for the inhibitory effect of iturin A on the growth and T-2 toxin synthesis of F. oxysporum and theoretical guidance for the application of iturin A in the preservation of dried aquatic products.

14.
Biol Trace Elem Res ; 201(9): 4437-4446, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36454454

ABSTRACT

As a toxic trace element commonly found in food, cadmium (Cd) can cause severe liver injury. Our previous study showed that threonine (Thr) could significantly alleviate Cd toxicity in yeast. To investigate the effect of Thr on Cd-induced liver injury in mice, twenty-four mice were randomly divided into four groups: control, Cd, and low/high dose of Thr-treatment groups (0.04 and 0.08 mmol/kg/day, respectively). After 7 days of continuous treatment, the alleviative effect of Thr on liver injury in Cd-exposed mice was assessed. The results showed that Thr significantly reduced the elevation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in Cd-exposed mice. Histological analysis showed that Thr decreased Cd-induced hepatic steatosis, zonal necrosis, and inflammatory cell infiltration. Thr also reduced the Cd-induced malondialdehyde (MDA) and O2- levels and restored superoxide dismutase (SOD) and catalase (CAT) activities in the liver. Further investigation showed that Thr significantly suppressed Cd-induced inflammatory response (tumor necrosis factor-α and interleukin-6) and restored the level of anti-apoptotic protein (Blc-2) but inhibited the elevation of pro-apoptotic proteins (Bax and caspase-3), as well as the activation of the PI3K/AKT signaling pathway in Cd-exposed mice. In conclusion, Thr alleviated Cd-induced liver injury through reducing Cd-induced oxidative stress, inflammation, and attenuating hepatocyte apoptosis via PI3K/AKT-related signaling pathway.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Animals , Mice , Antioxidants/metabolism , Apoptosis , Cadmium/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Liver/metabolism , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
15.
Food Chem ; 403: 134293, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36182858

ABSTRACT

Nanoliposomes are ideal nanocarriers for encapsulated active compounds used in the food industry as they provide stability and controlled release. However, cholesterol may pose risks in large intake, which is the commonly-used nanoliposome stabilizers. In this study, resveratrol was used instead of cholesterol as a novel nanoliposome stabilizer to construct a resveratrol blank liposome (RBL) system. The RBL system was used to protect the bacteriocin CAMT6 to create bacteriocin-loaded nanoliposomes (BLLs). The RBLs and BLLs had favourable particle sizes (172.71 nm and 150.47 nm), polydispersity index (PDI) values (0.150 and 0.120) and zeta potentials (-41.54 mV and -43.53 mV, respectively). According to Differential scanning colourimetry (DSC) and X-ray diffraction (XRD) analyses, resveratrol altered the structure of the phospholipid layer. The phospholipid layers of the RBLs and BLLs had higher mobility when resveratrol was used as a stabilizer instead of cholesterol. Structurally, resveratrol was inserted egg yolk lecithin to constitute an RBL. CAMT6 was loaded in BLLs with spherical and shell-core structures. The BLL encapsulation efficiency was 97.32 % and exhibited three release phases, with the release rates reaching 62 %. In experiments with milk, the BLLs effectively protected the anti-Listeria activity of CAMT6. In summary, resveratrol is a suitable nanoliposome stabilizer and the proposed RBL system is an excellent way to improve the stability of water-soluble preservatives, such as bacteriocins, in complex food environments.


Subject(s)
Bacteriocins , Resveratrol , Liposomes/chemistry , Particle Size , Excipients , Lecithins , Cholesterol
16.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499044

ABSTRACT

As a global pollutant, cadmium (Cd) can easily enter the body through food chains, threatening human health. Most Cd is initially absorbed in the gut, with the gut microbiota playing a pivotal role in reducing Cd absorption and accumulation. This study assessed the effects of three fatty acids on Cd accumulation and toxicity in Cd-exposed mice. The results showed that oleic acid (OA) was the most effective in facilitating Cd excretion in mice among these fatty acids. The use of OA led to reduced Cd accumulation in the organs and increased Cd content in the feces. The metagenomic analysis of the gut microbiota showed that the genus Burkholderia was the most significantly restored by OA in Cd-exposed mice. Burkholderia cepacia, as the type species for the genus Burkholderia, also exhibited strong Cd tolerance after treatment with OA. Furthermore, the electron microscopy analysis showed that most of the Cd was adsorbed on the surface of B. cepacia, where the extracellular polymeric substances (EPSs) secreted by B. cepacia play a key role, displaying a strong capacity for Cd adsorption. The peak at 2355 cm-1 and the total sulfhydryl group content of EPSs showed significant increases following co-treatment with Cd and OA. The results demonstrated the potential roles that gut Burkholderia may play in OA-mediated Cd excretion in mice.


Subject(s)
Burkholderia , Gastrointestinal Microbiome , Humans , Mice , Animals , Cadmium/toxicity , Oleic Acid/pharmacology , Feces
17.
Mar Drugs ; 20(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36547905

ABSTRACT

Cadmium (Cd) is a widespread environmental toxicant that can cause severe hepatic injury. Oyster protein hydrolysates (OPs) have potential effects on preventing liver disease. In this study, thirty mice were randomly divided into five groups: the control, Cd, Cd + ethylenediaminetetraacetic acid (EDTA, 100 mg/kg), and low/high dose of OPs-treatment groups (100 mg/kg or 300 mg/kg). After continuous administration for 7 days, the ameliorative effect of OPs on Cd-induced acute hepatic injury in Cd-exposed mice was assessed. The results showed that OPs significantly improved the liver function profiles (serum ALT, AST, LDH, and ALP) in Cd-exposed mice. Histopathological analysis showed that OPs decreased apoptotic bodies, hemorrhage, lymphocyte accumulation, and inflammatory cell infiltration around central veins. OPs significantly retained the activities of SOD, CAT, and GSH-Px, and decreased the elevated hepatic MDA content in Cd-exposed mice. In addition, OPs exhibited a reductive effect on the inflammatory responses (IL-1ß, IL-6, and TNF-α) and inhibitory effects on the expression of inflammation-related proteins (MIP-2 and COX-2) and the ERK/NF-κB signaling pathway. OPs suppressed the development of hepatocyte apoptosis (Bax, caspase-3, and Blc-2) and the activation of the PI3K/AKT signaling pathway in Cd-exposed mice. In conclusion, OPs ameliorated the Cd-induced hepatic injury by inhibiting oxidative damage and inflammatory responses, as well as the development of hepatocyte apoptosis via regulating the ERK/NF-κB and PI3K/AKT-related signaling pathways.


Subject(s)
Antioxidants , Cadmium , Mice , Animals , Cadmium/toxicity , Cadmium/metabolism , Antioxidants/pharmacology , Protein Hydrolysates/pharmacology , Protein Hydrolysates/therapeutic use , Protein Hydrolysates/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Liver , Oxidative Stress , Apoptosis
18.
Microbiol Spectr ; 10(6): e0368222, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36314982

ABSTRACT

Fusarium oxysporum is ubiquitous and can easily contaminate food during processing and storage, potentially producing T-2 toxin, which can pose a severe health risk to public health. Previous research on the presence of T-2 has focused on starch-rich foods, while protein- and amino acid-rich foods have received relatively little attention. In this study, the effects of amino acids on the growth of F. oxysporum and its T-2 production were investigated by gene deletion and complementation experiments. The results showed that amino acids, including aspartic acid, methionine, isoleucine, serine, phenylalanine, and cysteine, significantly inhibited the growth of F. oxysporum, while promoting T-2 synthesis, with cysteine having the most pronounced effect. The target of rapamycin complex 1 (TORC1) is a key pathway in response to a variety of amino acids, including cysteine. gtr2 and tap42 were found to be negative regulators of T-2 synthesis. The study highlights the elevated risk of T-2 production by F. oxysporum in cysteine-rich foods and the need to take appropriate measures to prevent and control the potential harm that such foods may present to public health. IMPORTANCE F. oxysporum and its T-2 contamination of food not only leads to food wastage but also poses a major food safety challenge to humans. The growth and T-2 production characteristics of F. oxysporum in high-protein substrates are considerably different from those in grains. Here, we show that the abundant free amino acids in a protein-rich food matrix are a key regulatory factor for the growth of, and toxin production by, F. oxysporum. Cysteine has the most pronounced effect on inhibiting mycelial growth and promoting T-2 synthesis through the TORC1 pathway. This implies that consumers tend to overlook T-2 contamination due to the poor growth of F. oxysporum in food rich in protein and amino acids, especially cysteine. Therefore, particular attention should be paid to the protection of those products.


Subject(s)
Fusarium , T-2 Toxin , Humans , T-2 Toxin/metabolism , T-2 Toxin/pharmacology , Cysteine/metabolism , Fusarium/genetics , Amino Acids/metabolism , Plant Diseases
19.
Molecules ; 27(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36296415

ABSTRACT

Dissolved oxygen (DO) is an key factor for lipopeptide fermentation. To better understand the link between oxygen supply and lipopeptide productivity in Bacillus velezensis CMT-6, the mechanism of DO on the synthesis of antimicrobial lipopeptides by Bacillus velezensis CMT-6 was examined. The production of surfactin and iturin of CMT-6 was detected by liquid chromatography-mass spectrometer (LC-MS) under different DO conditions and transcriptome analysis was performed. At 100 and 200 rpm, the lipopeptides productions were 2753.62 mg/L and 3452.90 mg/L, respectively. There was no significant change in the yield of iturin but that of surfactin increased by 64.14%. Transcriptome analysis revealed that the enriched differential genes were concentrated in the GO term of oxidation-reduction process. The marked enrichment of the lipopeptides synthesis pathway, including microbial metabolism in diverse environments and carbon metabolism in the two-component system, were observed. More importantly, the expression levels of the four surfactin synthetase genes increased at higher DO, however, the iturin synthetase gene expression did not. Furthermore, modular surfactin synthetase was overexpressed (between 9- and 49-fold) at 200 rpm but not at 100 rpm, which is suggestive of efficient surfactin assembly resulting in surfactin overproduction. This study provides a theoretical basis for constructing engineering strains with high lipopeptide production to adapt to different DO.


Subject(s)
Anti-Infective Agents , Lipopeptides , Lipopeptides/genetics , Lipopeptides/metabolism , Chromatography, Liquid , Oxygen , Peptides, Cyclic/metabolism , Tandem Mass Spectrometry , Gene Expression Profiling , Carbon
20.
J Sci Food Agric ; 102(11): 4883-4891, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35244220

ABSTRACT

BACKGROUND: Quercetin (Q), tea polyphenols (TP), and rutin (R) are widely used plant-derived active ingredients. They possess antioxidant, anti-inflammatory, and anti-tumor properties, and can reduce the muscle damage caused by mycotoxins. However, few studies have examined the protective mechanisms of quercetin, tea polyphenols, and rutin on muscle quality. To elucidate their protective mechanisms, shrimp were exposed to both T-2 toxin and these three antioxidants for 20 days in a dose-escalating trial. The changes in the protein composition of shrimp muscle were measured. The target proteins associated with T-2 and antioxidants were screened and identified by non-labeled quantitative proteomics. RESULTS: The T-2 toxin induced abnormal expression of 21 target proteins, leading to the deterioration of muscle proteins in shrimp. The three antioxidants ameliorated the T-2 toxin-induced damage to muscle proteins by increasing the sarcoplasmic and myofibrillar protein content and decreasing the alkali-soluble protein content. Quercetin had the strongest protective effect. The protective processes of these antioxidants involved the upregulation of target proteins involved in carbohydrate metabolism (enolase, malate dehydrogenase), protein translation (elongation factor 1-alpha and eukaryotic translation initiation factor 2 subunit alpha), and cytoskeleton component (actin 2, fast-type skeletal muscle actin 1). Quercetin regulated the largest number of target proteins, making it the best protective agent against T-2 toxin. CONCLUSION: The T-2 toxin (4.80-24.30 mg/kg feed) induced changes in target proteins and muscle composition of shrimp, leading to a deterioration in muscle proteins. Quercetin (2.00-32.00 g/kg feed) had significant protective effects against this deterioration in muscle protein in shrimp. © 2022 Society of Chemical Industry.


Subject(s)
Penaeidae , T-2 Toxin , Actins/metabolism , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Muscle Proteins/chemistry , Penaeidae/chemistry , Quercetin/metabolism , Quercetin/pharmacology , Rutin , T-2 Toxin/metabolism , T-2 Toxin/toxicity , Tea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...