Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Discov Oncol ; 15(1): 256, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955935

ABSTRACT

Cancer-associated thrombosis is a significant complication in cancer patients, leading to increased morbidity and mortality. The expression of coagulation/fibrinolysis genes, termed the "coagulome", plays a critical role in this process. Using the single-sample gene set enrichment analysis (ssGSEA), we identified seven cancer types with significantly activated coagulation pathways, focusing on lower-grade glioma (LGG) and stomach adenocarcinoma due to their predictive value for overall survival. Through 1000 iterations of the Least Absolute Shrinkage and Selection Operator (LASSO), we selected prognostic genes and constructed effective Cox regression models, particularly for LGG. Incorporating clinical characteristics, we constructed a nomogram for LGG, achieving an impressive area under the curve (AUCs) of 0.79, 0.82, and 0.81 at 1, 3, and 5 years in the test dataset, indicating strong potential for clinical application. Functional enrichment analysis between high-risk and low-risk LGG groups revealed significant enrichment of genes involved in the inflammatory response, interferon-gamma response, and epithelial-mesenchymal transition pathways. Combined with CIBERSORT and single-cell RNA sequencing analysis of LGG, our results demonstrated that the interplay between coagulation and the tumor microenvironment, particularly involving gliomas and myeloid cells, significantly influences tumor progression and patient outcomes.

2.
Chem Biol Interact ; 397: 111062, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38763349

ABSTRACT

Acute lung injury is the leading cause of paraquat (PQ) poisoning-related mortality. The mechanism by which macrophages are involved in PQ-induced acute lung injury remains unclear. In recent years, the role of metabolic reprogramming in macrophage functional transformation has received significant attention. The current study aimed to identify the role of altered macrophage glucose metabolism and molecular mechanisms in PQ poisoning-induced acute lung injury. We established a model of acute lung injury in PQ-intoxicated mice via the intraperitoneal injection of PQ. PQ exposure induces macrophage M1 polarization and promotes the release of inflammatory factors, which causes the development of acute lung injury in mice. In vitro analysis revealed that PQ altered glucose metabolism, which could be reversed by siRNA transfection to silence the expression of HK1, a key enzyme in glucose metabolism. RNA sequencing revealed that the ERK/MAPK pathway was the crucial molecular mechanism of PQ pathogenesis. Further, U0126, an ERK inhibitor, could inhibit PQ-induced HK1 activation and macrophage M1 polarization. These findings provide novel insights into the previously unrecognized mechanism of ERK/MAPK-HK1 activation in PQ poisoning.


Subject(s)
Acute Lung Injury , Glucose , Hexokinase , MAP Kinase Signaling System , Macrophages , Mice, Inbred C57BL , Paraquat , Animals , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Paraquat/toxicity , Mice , Glucose/metabolism , Macrophages/metabolism , Macrophages/drug effects , Hexokinase/metabolism , MAP Kinase Signaling System/drug effects , Male , Signal Transduction/drug effects , RAW 264.7 Cells
3.
Dokl Biochem Biophys ; 500(1): 408-414, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34697750

ABSTRACT

Acute kidney injury (AKI), one of the frequently diagnosed and serious sepsis induced complication has high morbidity and mortality. The present study investigated the bioprotective and functional effect of carnosine on AKI induced pathological damage in Male Albino rat model in vivo. AKI in Albino rats was induced by cecal ligation and puncture surgery where as TNF-α and IL-1ß levels were detected using ELISA assay. Protein expression was examined by western blotting and pathological damage using hematoxylin and eosin (H&E). Treatment with carnosine suppressed AKI induced urea nitrogen and creatinine in Male Albino rat serum in dose-dependent manner. Development of sepsis mediated renal injury in Albino rats was also effectively prevented on treatment with carnosine. Secretion of AKI-induced IL-1ß, IL-18, and TNF-α in renal tissues was alleviated significantly in Albino rats by carnosine treatment. Additionally, in carnosine-treated Albino rats renal tissues AKI induced Bax expression was alleviated while as Bcl-2 was promoted compared to AKI Albino rats. Carnosine treatment improved the survival rate of the Albino rats with AKI. Carnosine inhibits renal tissue damage and increases survival rate in AKI Albino rat model. The mechanism involves alleviation of inflammatory cytokine secretion and promotion of Bcl-2 expression. Thus, carnosine may be used as a therapeutic agent for treatment of AKI.


Subject(s)
Tumor Necrosis Factor-alpha , Male , Animals , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...