Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 770: 144557, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33508664

ABSTRACT

Soils can influence climate by sequestering or emitting greenhouse gases (GHG) such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). We are far from understanding the direct influence of cryptogamic covers on soil GHG fluxes, particularly in areas free of potential anthropogenic confounding factors. We assessed the role of well-developed cryptogamic covers in soil attributes, as well as in the in-situ exchange of GHG between Antarctic soils and the atmosphere during the austral summer. We found lower values of soil organic matter, total organic carbon, and total nitrogen in bare areas than in soils covered by mosses and, particularly, lichens. These differences, together with concomitant decreases and increases in soil temperature and moisture, respectively, resulted in increases in in-situ CO2 emission (i.e. ecosystem respiration) and decreases in CH4 uptake but no significant changes in N2O fluxes. We found consistent linear positive and negative relationships between soil attributes (i.e. soil organic matter, total organic carbon and total nitrogen) and CO2 emissions and CH4 uptake, respectively, and polynomial relationships between these soil attributes and net N2O fluxes. Our results indicate that any increase in the area occupied by cryptogams in terrestrial Antarctic ecosystems (due to increased growing season and increasingly warming conditions) will likely result in parallel increases in soil fertility as well as in an enhanced capacity to emit CO2 and a decreased capacity to uptake CH4. Such changes, unless offset by parallel C uptake processes, would represent a paradigmatic example of a positive climate change feedback. Further, we show that the fate of these terrestrial ecosystems under future climate scenarios, as well as their capacity to exchange GHG with the atmosphere might depend on the relative ability of different aboveground cryptogams to thrive under the new conditions.


Subject(s)
Greenhouse Gases , Antarctic Regions , Carbon Dioxide/analysis , Ecosystem , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Soil
2.
J Environ Qual ; 45(3): 1096-103, 2016 May.
Article in English | MEDLINE | ID: mdl-27136179

ABSTRACT

Solid-liquid separation is performed to improve slurry management, and acidification of the slurry is used to reduce ammonia emissions. Acidification is known to affect slurry characteristics, and we hypothesized that it may affect mechanical separation. Our objective in this study was to assess the effects of slurry acidification on particle size distribution and separation efficiency. Two types of slurry, aged pig and fresh dairy, and two different acidification additives, sulfuric acid and aluminum sulfate (alum), were studied. We found that acidification with sulfuric acid promoted phosphorus (P) solubilization for both slurries, but no change was observed with alum. More ammonium was found in the acidified dairy slurry compared with raw dairy slurry, but no difference was found in aged pig slurry. Acidification before separation increased the proportion of the solid fraction in the slurries, and the effect was significantly higher with alum. When alum was used to acidify the slurries, the proportion of particles larger than 100 µm increased significantly, as did the P concentration in this particle size range. The efficiency of P separation increased markedly in both slurries when alum was used, with the removal to the solid fraction of the dairy slurry being almost complete (90%). Because the priority in mechanical separation is to increase the P content in the solid fraction, the use of alum before centrifugation may be the most suitable option for enhancing its nutrient content. We conclude that separation efficiency and particle size distribution are significantly affected by acidification, but the extent of the effects depends on slurry type and on the type of additive used for acidification.


Subject(s)
Manure , Phosphorus/analysis , Ammonia , Animals , Hydrogen-Ion Concentration , Particle Size
3.
J Environ Manage ; 146: 198-205, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25173728

ABSTRACT

For farmers, management of cattle slurry (CS) is now a priority, in order to improve the fertilizer value of the slurry and simultaneously minimize its environmental impact. Several slurry pre-treatments and soil application methods to minimize ammonia emissions are now available to farmers, but the impact of such management strategies on groundwater is still unclear. A laboratory experiment was performed over 24 days in controlled conditions, with undisturbed soil columns (sandy soil) in PVC pipes (30 cm high and 5.7 cm in diameter). The treatments considered (4 replicates) were: a control with no amendment (CTR), injection of whole CS (WSI), and surface application of: whole CS (WSS), acidified (pH 5.5) whole CS (AWSS), the liquid fraction obtained by centrifugation of CS (LFS), and acidified (pH 5.5) liquid fraction (ALFS). An amount of CS equivalent to 240 kg N ha(-1) was applied in all treatments. The first leaching event was performed 72 h after application of the treatments and then leaching events were performed weekly to give a total of four irrigation events (IEs). All the leachates obtained were analyzed for mineral and organic nitrogen, electrical conductivity (EC), pH, total carbon, and phosphorus. Total coliforms and Escherichia coli were also quantified in the leachates obtained in the first IE. The results show that both acidification and separation had significant effects on the composition of the leachates: higher NO3(-) concentrations were observed for the LFS and ALFS relative to all the other treatments, throughout the experiment, and lower NO3(-) concentrations were observed for acidified relative to non-acidified treatments at IE2. Acidification of both the LF and WS led to higher NH4(+) concentrations as well as an increase of EC for treatment ALFS relative to the control, in the first IE, and lower pH values in the AWSS. Furthermore, the E. coli and total coliform concentrations in AWSS, LFS, and ALFS were significantly higher than in WSI or WSS. In conclusion, none of the strategies generally used to minimize ammonia emissions impact positively on leaching potential relative to the traditional surface application of CS. Furthermore, some treatments, such as separation, might increase significantly the risk of leaching.


Subject(s)
Manure/analysis , Soil Microbiology , Soil/chemistry , Water Pollutants/chemistry , Animals , Cattle , Environment , Escherichia coli/isolation & purification , Rain
SELECTION OF CITATIONS
SEARCH DETAIL
...