Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioact Mater ; 28: 337-347, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37519922

ABSTRACT

Surface topographies of cell culture substrates can be used to generate in vitro cell culture environments similar to the in vivo cell niches. In vivo, the physical properties of the extracellular matrix (ECM), such as its topography, provide physical cues that play an important role in modulating cell function. Mimicking these properties remains a challenge to provide in vitro realistic environments for cells. Artificially generated substrates' topographies were used extensively to explore this important surface cue. More recently, the replication of natural surface topographies has been enabling to exploration of characteristics such as hierarchy and size scales relevant for cells as advanced biomimetic substrates. These substrates offer more realistic and mimetic environments regarding the topographies found in vivo. This review will highlight the use of natural surface topographies as a template to generate substrates for in-vitro cell culture. This review starts with an analysis of the main cell functions that can be regulated by the substrate's surface topography through cell-substrate interactions. Then, we will discuss research works wherein substrates for cell biology decorated with natural surface topographies were used and investigated regarding their influence on cellular performance. At the end of this review, we will highlight the advantages and challenges of the use of natural surface topographies as a template for the generation of advanced substrates for cell culture.

2.
Biomed Mater ; 18(3)2023 04 04.
Article in English | MEDLINE | ID: mdl-36930979

ABSTRACT

The interaction between cells and biomaterials is essential for the success of biomedical applications in which the implantation of biomaterials in the human body is necessary. It has been demonstrated that material's chemical, mechanical, and structural properties can influence cell behaviour. The surface topography of biomaterials is a physical property that can have a major role in mediating cell-material interactions. This interaction can lead to different cell responses regarding cell motility, proliferation, migration, and even differentiation. The combination of biomaterials with mesenchymal stem cells (MSCs) for bone regeneration is a promising strategy to avoid the need for autologous transplant of bone. Surface topography was also associated with the capacity to control MSCs differentiation. Most of the topographies studied so far involve machine-generated surface topographies. Herein, our strategy differentiates from the above mentioned since we selected natural surface topographies that can modulate cell functions for regenerative medicine strategies.Rubus fruticosusleaf was the selected topography to be replicated in polycaprolactone (PCL) membranes through polydimethylsiloxane moulding and using soft lithography. Afterwards, rat bone marrow stem cells (rBMSCs) were seeded at the surface of the imprinted PCL membranes to characterize the bioactive potential of our biomimetic surface topography to drive rBMSCs differentiation into the osteogenic lineage. The selected surface topography in combination with the osteogenic inductive medium reveals having a synergistic effect promoting osteogenic differentiation.


Subject(s)
Biomimetics , Osteogenesis , Rats , Humans , Animals , Cell Differentiation , Biocompatible Materials/pharmacology , Bone and Bones
3.
Biomater Adv ; 141: 213128, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36179494

ABSTRACT

The implantation of biomaterial devices can negatively impact the local microenvironment through several processes including the injury incurred during the implantation process and the associated host inflammatory response. Immune cell responses to implantable biomaterial devices mediate host-material interactions. Indeed, the immune system plays a central role in several biological processes required for the integration of biomaterials such as wound healing, tissue integration, inflammation, and foreign body reactions. The implant physicochemical properties such as size, shape, surface area, topography, and chemistry have been shown to provide cues to the immune system. Its induced immune-modulatory responses towards inflammatory or wound healing phenotypes can determine the success of the implant. In this work, we aim to evaluate the impact of some biomimetic surface topographies on macrophages' acute inflammatory response. For that, we selected 4 different biological surfaces to replicate through soft lithography on spin casting PCL membranes. Those topographies were: the surface of E. coli, S.eppidermidis and L929 cells cultured in polystyrene tissue culture disks, and an Eggshell membrane. We selected a model based on THP-1-derived macrophages to study the analysis of the expression of both pro-inflammatory and anti-inflammatory markers. Our results revealed that depending on the surface where these cells are seeded, they present different phenotypes. Macrophages present a M1-like phenotype when they are cultured on top of PCL membranes with the surface topography of E. coli and S. epidermidis. When cultured on membranes with L929 monolayers or Eggshell membrane surface topography, the macrophages present a M2-like phenotype. These results can be a significant advance in the development of new implantable biomaterial devices since they can help to modulate the inflammatory responses to implanted biomaterials by controlling their surface topography.


Subject(s)
Biocompatible Materials , Polystyrenes , Anti-Inflammatory Agents/chemistry , Biocompatible Materials/adverse effects , Biomimetics , Escherichia coli , Humans , Inflammation/metabolism , Macrophages , Polystyrenes/chemistry
4.
Colloids Surf B Biointerfaces ; 206: 111910, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34147929

ABSTRACT

The development of bioresponsive interfaces that can induce a beneficial impact on cell mechanisms, such as adhesion, proliferation, migration and differentiation are of utmost relevance in Tissue engineering (TE) approaches. The surface topography is a captivating property that contribute to interesting cell responses, being inspired by several cues found in nature. Therefore, the study herein presented reports the fabrication of a surface topography using the Rubus fruticosus leaf on spin casting polycaprolactone (PCL) membranes. The topography was replicated by replica molding rapid fabrication technique and nanoimprint lithography (NIL). The biomimetic patterned PCL membranes (bpM) were successfully produced revealing high detail due to the complexity of the leaf's surface ranging from the stroma structures to nerves structures. The thermal evaluation revealed a slight increase of crystallinity of the bpM compared with the other tested conditions. However, did not induce significant effects on the melting and recrystallization temperatures. The mechanical properties revealed that the young modulus increase from 3.2 MPa to 4.4 MPa during the imprinting process. However, bpM presents a lowest elongation capacity than bare membrane (bM) (1076 to 444 %, respectively) due to the heterogeneous thickness induced by the topography. The selected topography revealed to promote a positive bioresponse, depicted by the improvement of the cellular behaviour and different organization. This promising strategy revealed that circumventing the traditional topographies by nature mimetic topographies is fundamental for the development of innovative bioresponsive substrates that can tune cellular behaviour in TE strategies.


Subject(s)
Biomimetics , Rubus , Plant Leaves , Surface Properties , Tissue Engineering
5.
Heliyon ; 6(5): e03831, 2020 May.
Article in English | MEDLINE | ID: mdl-32395645

ABSTRACT

Sunscreens have been employed on daily skin care for centuries. Their role in protecting the skin from sun damage, avoiding accelerated photoaging and even limiting the risk of development of skin cancer is unquestionable. Although several chemical and physical filters are approved as sunscreens for human use, their safety profile is dependent on their concentration in the formulation which governs their acceptance by the regulatory agencies. A strategic delivery of such molecules should provide a UV protection and limit the skin penetration. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) may offer an alternative approach to achieve a synergistic effect on the UV protection when loaded with sunscreens as particles themselves also have a UV light scattering effect. Besides, the lipid character of SLN and NLC improves the encapsulation of lipophilic compounds, with enhanced loading capacity. Silica nanoparticles have also been employed in sunscreen formulations. Due to the formed sol-gel complexes, which covalently entrap sunscreen molecules, a controlled release is also achieved. In the present work, we have developed a new sunscreen formulation composed of hybrid SLN-Silica particles loaded with octyl methoxycinnamate (Parsol®MCX), and their further incorporation into a hydrogel for skin administration. Hybrid SLN-silica particles of 210.0 ± 3.341 nm of mean size, polydispersity below 0.3, zeta potential of ca. |7| mV, loading capacity of 19.9% and encapsulation efficiency of 98.3% have been produced. Despite the slight negative surface charge, the developed hybrid nanoparticles remained physicochemically stable over the study period. Turbiscan transmission profiles confirmed the colloidal stability of the formulations under stress conditions. The texture profile analysis of Parsol-SLN and Parsol-SLN-Si revealed semi-solid properties (e.g. adhesiveness, hardness, cohesiveness, springiness, gumminess, chewiness, resilience) suitable for topical application, together with the bioadhesiveness in the skin of pig ears. The non-irritation profile of the hybrid nanoparticles before and after dispersion into Carbopol hydrogels was confirmed by HET-CAM test.

6.
Saudi Pharm J ; 25(8): 1117-1124, 2017 Dec.
Article in English | MEDLINE | ID: mdl-30166898

ABSTRACT

The reduction of the particle size of drugs of pharmaceutical interest down to the nano-sized range has dramatically changed their physicochemical properties. The greatest disadvantage of nanocrystals is their inherent instability, due to the risk of crystal growth. Thus, the selection of an appropriate stabilizer is crucial to obtain long-term physicochemically stable nanocrystals. High pressure homogenization has enormous advantages, including the possibility of scaling up, lack of organic solvents and the production of small particles diameter with low polydispersity index. The sequential use of high shear homogenization followed by high pressure homogenization, can modulate nanoparticles' size for different administration routes. The present study focuses on the optimization of the production process of two formulations composed of different surfactants produced by High Shear Homogenization followed by hot High Pressure Homogenization. To build up the surface response charts, a 22 full factorial design experiment, based on 2 independent variables, was used to develop optimized formulations. The effects of the production process on the mean particle size and polydispersity index were evaluated. The best ibuprofen nanocrystal formulations were obtained using 0.20% Tween 80 and 1.20% PVP K30 (F1) and 0.20% Tween 80 and 1.20% Span 80 (F2). The estimation of the long-term stability of the aqueous suspensions of ibuprofen nanocrystals was studied using the LUMISizer. The calculated instability index suggests that F1 was more stable when stored at 4 °C and 22 °C, whereas F2 was shown to be more stable when freshly prepared.

7.
Clin. transl. oncol. (Print) ; 15(6): 417-424, jun. 2013. ilus
Article in English | IBECS | ID: ibc-127383

ABSTRACT

Basal cell carcinomas and squamous cell carcinomas are non-melanoma skin cancers reported to be among the most common malignancies, being responsible for high human morbidity. Conventional chemotherapy applied to these conditions shows non-specific targeting, thus severe adverse side effects are also commonly reported. New therapeutic strategies based on nanoparticulates technology have emerged as alternatives for site specific chemotherapy. Among the different types of nanoparticulates, lipid nanoemulsions and nanoparticles have several advantages for topical delivery of poorly soluble chemotherapeutics. These particles show sustained drug release and protection of loaded drugs from chemical degradation. This technology is promising to enhance the intracellular concentration of drugs and consequently reduce the cytotoxicity of skin chemotherapy (AU)


Subject(s)
Humans , Male , Female , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Skin Neoplasms/radiotherapy , Skin Neoplasms/diagnosis , Neoplasms/mortality , Neoplasms/pathology , Neoplasms, Squamous Cell/diagnosis
8.
Clin Transl Oncol ; 15(6): 417-24, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23344664

ABSTRACT

Basal cell carcinomas and squamous cell carcinomas are non-melanoma skin cancers reported to be among the most common malignancies, being responsible for high human morbidity. Conventional chemotherapy applied to these conditions shows non-specific targeting, thus severe adverse side effects are also commonly reported. New therapeutic strategies based on nanoparticulates technology have emerged as alternatives for site specific chemotherapy. Among the different types of nanoparticulates, lipid nanoemulsions and nanoparticles have several advantages for topical delivery of poorly soluble chemotherapeutics. These particles show sustained drug release and protection of loaded drugs from chemical degradation. This technology is promising to enhance the intracellular concentration of drugs and consequently reduce the cytotoxicity of skin chemotherapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Basal Cell/drug therapy , Carcinoma, Squamous Cell/drug therapy , Drug Carriers , Lipids/chemistry , Nanoparticles , Skin Neoplasms/drug therapy , Emulsions , Humans
9.
Eur J Med Chem ; 60: 249-53, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23313633

ABSTRACT

Insulin-loaded microspheres composed of chitosan 3% (w/v), and loading 120 IU insulin were produced by emulsion cross-linking method. Cross-linking time was 5 h and glutaraldehyde 3.5% (v/v) was used as cross-linker. Swelling ratio studies were evaluated to predict release of insulin from chitosan microspheres. Bacitracin and sodium taurocholate were incorporated in the formulations as proteolytic enzyme inhibitor and absorption enhancer, respectively. In vitro insulin release studies were performed in phosphate buffer pH 7.4 and also in HCl pH 2 with and without trypsin. Activity of bacitracin was also evaluated. In vitro release showed a controlled profile up to 12 h and the formulation containing 0.15% (w/v) of bacitracin revealed a maximum biological activity of about 49.1 ± 4.1%. Mathematical modeling using Higuchi and Korsmeyer-Peppas suggested a non-Fickian diffusion as the mechanism of insulin release. Insulin-loaded chitosan microspheres for oral delivery showed to be an innovative and reliable delivery system to overcome conventional insulin therapy.


Subject(s)
Chitosan/chemistry , Cross-Linking Reagents/chemistry , Insulin/chemistry , Microspheres , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Particle Size , Surface Properties
10.
Pharm Dev Technol ; 18(3): 545-9, 2013.
Article in English | MEDLINE | ID: mdl-21711084

ABSTRACT

A novel nanocarrier based on solid lipid nanoparticles (SLNs) was developed for insulin delivery using a novel double emulsion method. Physical stability of particles was assessed by size analysis using dynamic light scattering (DLS), matrix crystallinity by differential scanning calorimetry (DSC) and toxicity analysis by Drosophila melanogaster testing. Insulin-SLNs were composed of Softisan®100 1.25% wt, Lutrol®F68 1% wt, soybean lecithin 0.125% wt, and loaded with 0.73-0.58 mg/mL peptide. Placebo-SLNs (insulin-free) also contained 0.025% wt Tween®80. Mean particle sizes of placebo-SLN and insulin-SLN were 958 ± 9.5 and 978 ± 8.3 nm, respectively. The polydispersity index (PI) was 0.28 ± 0.018 and 0.29 ± 0.013, respectively. Polarized light microscopy analysis depicted no aggregation of developed particles. DSC analysis allowed characterizing SLN with 43-51% matrix crystallinity. Using Drosophila melanogaster test, no toxicity was reported for SLN and for the bulk lipid. This study shows that SLNs are promising and helpful to overcome conventional insulin therapy, in particular for their lack of toxicity for oral delivery.


Subject(s)
Drug Carriers/toxicity , Drug Delivery Systems/methods , Insulin/toxicity , Nanocapsules/toxicity , Animals , Crystallization , Drosophila melanogaster/drug effects , Drosophila melanogaster/physiology , Drug Carriers/administration & dosage , Drug Carriers/chemical synthesis , Drug Delivery Systems/adverse effects , Female , Humans , Insulin/administration & dosage , Insulin/chemistry , Male , Nanocapsules/administration & dosage , Nanocapsules/chemistry
11.
Colloids Surf B Biointerfaces ; 92: 175-9, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22221459

ABSTRACT

Insulin-loaded chitosan microspheres were engineered by emulsion cross-linking method using glutaraldehyde as cross-linker. Taguchi orthogonal method was applied to optimize the production time and reduce the number of experiments required to obtain an optimized formulation. Three variables were evaluated, i.e. chitosan and glutaraldehyde concentrations, and cross-linking time at three levels. The dependent variables were the mean particle size and the encapsulation efficiency. The optimal formulation was obtained with chitosan 3% (w/v), glutaraldehyde 3.5% (v/v), and cross-linking time of 5h, characterized by microspheres with a mean particle size of 29.5 µm, and insulin encapsulation efficiency of 71.6±1.3%. In vivo studies were carried out using male Wistar albino rats, revealing a significant reduction in blood glucose level after administration of the optimized formulation, in comparison to a subcutaneous insulin injection. Chitosan microspheres were superior in terms of sustaining protein release over conventional insulin therapy.


Subject(s)
Chemistry, Pharmaceutical/methods , Chitosan/chemistry , Cross-Linking Reagents/chemistry , Insulin/administration & dosage , Insulin/pharmacology , Microspheres , Administration, Oral , Animals , Blood Glucose/drug effects , Humans , Injections, Subcutaneous , Male , Microscopy, Electron, Scanning , Particle Size , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...