Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Vaccines (Basel) ; 10(7)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35891165

ABSTRACT

Advanced therapy medical products (ATMPs) are rapidly growing as innovative medicines for the treatment of several diseases. Hence, the role of quality analytical tests to ensure consistent product safety and quality has become highly relevant. Several clinical trials involving dendritic cell (DC)-based vaccines for cancer treatment are ongoing at our institute. The DC-based vaccine is prepared via CD14+ monocyte differentiation. A fresh dose of 10 million DCs is administered to the patient, while the remaining DCs are aliquoted, frozen, and stored in nitrogen vapor for subsequent treatment doses. To evaluate the maintenance of quality parameters and to establish a shelf life of frozen vaccine aliquots, a stability program was developed. Several parameters of the DC final product at 0, 6, 12, 18, and 24 months were evaluated. Our results reveal that after 24 months of storage in nitrogen vapor, the cell viability is in a range between 82% and 99%, the expression of maturation markers remains inside the criteria for batch release, the sterility tests are compliant, and the cell costimulatory capacity unchanged. Thus, the data collected demonstrate that freezing and thawing do not perturb the DC vaccine product maintaining over time its functional and quality characteristics.

2.
Int J Mol Sci ; 22(24)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34948154

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Chemotherapy, the treatment of choice in non-operable cases, achieves a dismal success rate, raising the need for new therapeutic options. In about 25% of NSCLC, the activating mutations of the KRAS oncogene define a subclass that cannot benefit from tyrosine kinase inhibitors (TKIs). The tumor suppressor miR-16 is downregulated in many human cancers, including NSCLC. The main objectives of this study were to evaluate miR-16 treatment to restore the TKI sensitivity and compare its efficacy to MEK inhibitors in KRAS-mutated NSCLC. METHODS: We performed in vitro and in vivo studies to investigate whether miR-16 could be exploited to overcome TKI resistance in KRAS-mutated NSCLC. We had three goals: first, to identify the KRAS downstream effectors targeted by mir-16, second, to study the effects of miR-16 restoration on TKI resistance in KRAS-mutated NSCLC both in vitro and in vivo, and finally, to compare miR-16 and the MEK inhibitor selumetinib in reducing KRAS-mutated NSCLC growth in vitro and in vivo. RESULTS: We demonstrated that miR-16 directly targets the three KRAS downstream effectors MAPK3, MAP2K1, and CRAF in NSCLC, restoring the sensitivity to erlotinib in KRAS-mutated NSCLC both in vitro and in vivo. We also provided evidence that the miR-16-erlotinib regimen is more effective than the selumetinib-erlotinib combination in KRAS-mutated NSCLC. CONCLUSIONS: Our findings support the biological preclinical rationale for using miR-16 in combination with erlotinib in the treatment of NSCLC with KRAS-activating mutations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , MAP Kinase Kinase Kinases , MicroRNAs , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras) , RNA, Neoplasm , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/therapy , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/genetics , Male , Mice , Mice, Inbred NOD , Mice, SCID , MicroRNAs/biosynthesis , MicroRNAs/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , Xenograft Model Antitumor Assays
3.
Transl Lung Cancer Res ; 10(4): 1819-1828, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34012795

ABSTRACT

BACKGROUND: Programmed death protein (ligand) 1 [PD-(L)1] inhibitors have provided new therapeutic options for advanced lung cancer. However, patients with hepatitis B virus (HBV) infection have been traditionally excluded from most registered trials of this form of treatment. METHODS: We performed a retrospective analysis of patients with HBV and advanced lung cancer who received anti-PD-1 immunotherapy from September 2018 to May 2020 in our department. Treatment-related hepatotoxicity was evaluated and recorded. Overall response rate and progression free survival were also assessed in the patients using iRECIST. RESULTS: Seventeen patients were evaluated in this analysis. Of these, six (35.3%) experienced hepatic transaminase elevation during immunotherapy. Three of these patients developed Grade 3 hepatic immune-related adverse events and received systemic corticosteroids, following which aminotransferase levels recovered to normal in all patients and no adverse events were observed in subsequent treatment. No patient experienced HBV reactivation or flare. One patient developed active pulmonary tuberculosis (TB). Other adverse events were mild, well tolerated and short term. The objective response rate (ORR) of the cohort was 62.5%, and the median progression-free survival (PFS) was 3 months. CONCLUSIONS: Lung cancer patients can be treated safely with anti-PD-1 inhibitors in the context of HBV infection. Close monitoring for hepatotoxicity and prophylactic antiviral therapy is advised. Further studies on the use of anti-PD-1 inhibitors in HBV-infected patients are needed.

4.
Front Cell Dev Biol ; 8: 579160, 2020.
Article in English | MEDLINE | ID: mdl-33282861

ABSTRACT

Breast cancer (BC) is the most diagnosed carcinoma and the leading cause of cancer death in female over 100 countries. Thanks to the advance in therapeutic strategies, patients' survival has improved. However, the lack of response to treatments and drug resistance are still a main concern, demanding for new therapeutic approaches, in particular for the advanced stages of the disease. Androgen receptor (AR) is gaining increasing interest as a fourth targetable receptor in BC, however, its regulation in BC cells is still poorly understood. MicroRNAs (miRNAs) regulate gene expression post-transcriptionally. Here, we identified miR-9-5p as an inhibitor of AR expression, we validated the inverse correlation between miR-9-5p and AR in primary BC samples and we further identified a feedback loop in which androgen agonists of AR up-regulate miR-9-5p. We also provided evidence that miR-9-5p elicits anti-proliferative effects in BC cell lines regardless of their estrogen receptor status. Finally, we showed that miR-9-5p can revert AR-downstream signaling even in presence of AR-agonists, highlighting the role of this miR in the hormonal response of BC. In conclusion, this study supports the role of miR-9-5p as an anti-proliferative miR in BC and as a central modulator of AR-signaling response to circulating androgens in BC.

5.
Cell Transplant ; 29: 963689720968749, 2020.
Article in English | MEDLINE | ID: mdl-33108902

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. One open question is whether genetics could influence the severity of symptoms. Considering the limited data on cancer patients, we analyzed public data repositories limited to investigate angiotensin-converting enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) expressions and genetic variants to identify the basis of individual susceptibility to SARS-CoV-2.Gene expression and variant data were retrieved from Tissue Cancer Genome Atlas, Genotype-Tissue Expression, and gnomAD. Differences in gene expression were tested with Mann-Whitney U-test. Allele frequencies of germline variants were explored in different ethnicities, with a special focus on ACE2 variants located in the binding site to SARS-CoV-2 spike protein.The analysis of ACE2 and TMPRSS2 expressions in healthy tissues showed a higher expression in the age class 20 to 59 years (false discovery rate [FDR] < 0.0001) regardless of gender. ACE2 and TMPRSS2 were more expressed in tumors from males than females (both FDR < 0.0001) and, opposite to the regulation in tissues from healthy individuals, more expressed in elderly patients (FDR = 0.005; FDR < 0.0001, respectively). ACE2 and TMPRSS2 expressions were higher in cancers of elderly patients compared with healthy individuals (FDR < 0.0001). Variants were present at low frequency (range 0% to 3%) and among those with the highest frequency, the variant S19P belongs to the SARS-CoV-2 spike protein binding site and it was exclusively present in Africans with a frequency of 0.2%.The mechanisms of ACE2 and TMPRSS2 regulation could be targeted for preventive and therapeutic purposes in the whole population and especially in cancer patients.Further studies are needed to show a direct correlation of ACE2 and TMPRSS2 expressions in cancer patients and the incidence of COVID-19.


Subject(s)
Coronavirus Infections/pathology , Genetic Predisposition to Disease , Neoplasms/pathology , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/pathology , Serine Endopeptidases/genetics , Adult , Angiotensin-Converting Enzyme 2 , Betacoronavirus/isolation & purification , Binding Sites , Black People/genetics , COVID-19 , Case-Control Studies , Coronavirus Infections/virology , Databases, Genetic , Female , Gene Frequency , Genetic Variation , Humans , Incidence , Male , Middle Aged , Neoplasms/epidemiology , Neoplasms/genetics , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Young Adult
6.
Int J Mol Sci ; 21(16)2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32806665

ABSTRACT

Microbial communities and human cells, through a dynamic crosstalk, maintain a mutualistic relationship that contributes to the maintenance of cellular metabolism and of the immune and neuronal systems. This dialogue normally occurs through the production and regulation of hormonal intermediates, metabolites, secondary metabolites, proteins, and toxins. When the balance between host and microbiota is compromised, the dynamics of this relationship change, creating favorable conditions for the development of diseases, including cancers. Microbiome metabolites can be important modulators of the tumor microenvironment contributing to regulate inflammation, proliferation, and cell death, in either a positive or negative way. Recent studies also highlight the involvement of microbiota metabolites in inducing epithelial-mesenchymal transition, thus favoring the setup of the metastatic niche. An investigation of microbe-derived metabolites in "liquid" human samples, such as plasma, serum, and urine, provide further information to clarify the relationship between host and microbiota.


Subject(s)
Disease Progression , Metabolome , Microbiota , Neoplasms/microbiology , Neoplasms/pathology , Animals , Humans , Neoplasm Metastasis , Tumor Microenvironment
7.
Diagnostics (Basel) ; 10(8)2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32784518

ABSTRACT

CDK4/6 inhibitors (CDK4/6i) are recommended in patients with estrogen receptor (ER)-positive, HER2-negative advanced breast cancer (ABC). Up to now, no prognostic biomarkers have been identified in this setting. We retrospectively analyzed the expression of progesterone receptor (PR) and Ki67, assessed by immunohistochemistry, in 71 ABC patients treated with CDK4/6i and analyzed the impact of these markers on progression-free survival (PFS). The majority of patients 63/71 (88.7%) received palbociclib, 4 (5.6%) received ribociclib, and 4 (5.6%) received abemaciclib. A higher median value of Ki67 was observed in cases undergoing second-line treatment (p = 0.047), whereas the luminal B subtype was more prevalent (p = 0.005). In the univariate analysis of the first-line setting, luminal A subtype showed a trend towards a correlation with a longer PFS (p = 0.053). A higher continuous Ki67 value led to a significantly shorter PFS. When the interaction between pathological characteristics and line of treatment was considered, luminal B subtype showed a significantly (p = 0.043) worse outcome (Hazard Ratio (HR) 2.84; 1.03-7.82 95% Confidence Interval (CI)). PFS in patients undergoing endocrine therapy plus CDK4/6i was inversely correlated with Ki67 expression but not with PR, suggesting that tumor proliferation has a greater impact on cell cycle inhibitors combined with endocrine therapy than PR expression.

9.
Front Genet ; 10: 203, 2019.
Article in English | MEDLINE | ID: mdl-30941159

ABSTRACT

Breast cancer (BC) is the most common cause of cancer among women, with a high incidence rate occurrence every year worldwide despite advances in its management. BC is characterized by a spectrum of subtypes which respond differently to treatments due to their biological features, representing the main issue in the control of this type of malignancy. Androgen receptor (AR) is emerging as a target to investigate among hormone receptors, since it seems to play a role at various stages of development of specific BC subsets. For this reason, in recent years AR has become very important in the clinical practice, although its role remains controversial. A number of studies have proposed a correlation between microRNAs (miRNAs), a class of gene expression modulators, and AR in prostate cancer (PC), but there are still few evidences about the relationship between miRNAs and AR in BC. The purpose of this review is to present a state of the art scenario with consideration to the most recent discoveries about miRNAs involved in the AR associated pathogenesis of BC, in order to provide new insights into the role of miRNAs as key drivers in the modulation of AR, and possible actors in the development and progression of BC. Moreover, we consider findings about involvement of AR signaling in all stages of BC, highlighting its association with different subsets of breast carcinomas and with pre- and postmenopausal state of patients.

11.
Curr Opin Genet Dev ; 48: 128-133, 2018 02.
Article in English | MEDLINE | ID: mdl-29429825

ABSTRACT

MicroRNAs (miRNAs) have emerged as important regulators of human carcinogenesis by affecting the expression of key oncogenes and tumor suppressor genes. MiRNAs elicit their function through post-transcriptional regulation of the mRNA translation into protein as well as functioning as ligands for proteic receptors called miRceptors. Our understanding of the role of miRNAs in cancer biology has enormously improved in the last few years, providing the rationale for new therapeutics. Here we discuss the most recent findings on the role of miRNAs in modulating cancer biology with a specific focus on their role as modulators of the biology of the tumor microenvironment both as cargo of extracellular vesicles and as extra-vesicular miRNAs.


Subject(s)
MicroRNAs/genetics , Neoplasms/genetics , Animals , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Oncogenes
13.
Nat Commun ; 8(1): 1801, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29180617

ABSTRACT

The transcribed ultraconserved regions (T-UCRs) encode long non-coding RNAs implicated in human carcinogenesis. Their mechanisms of action and the factors regulating their expression in cancers are poorly understood. Here we show that high expression of uc.339 correlates with lower survival in 210 non-small cell lung cancer (NSCLC) patients. We provide evidence from cell lines and primary samples that TP53 directly regulates uc.339. We find that transcribed uc.339 is upregulated in archival NSCLC samples, functioning as a decoy RNA for miR-339-3p, -663b-3p, and -95-5p. As a result, Cyclin E2, a direct target of all these microRNAs is upregulated, promoting cancer growth and migration. Finally, we find that modulation of uc.339 affects microRNA expression. However, overexpression or downregulation of these microRNAs causes no significant variations in uc.339 levels, suggesting a type of interaction for uc.339 that we call "entrapping". Our results support a key role for uc.339 in lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Conserved Sequence/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/metabolism , Animals , Base Sequence/genetics , Carcinogenesis/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cyclins/genetics , Cyclins/metabolism , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Lung/pathology , Lung Neoplasms/pathology , Mice , Mice, Nude , MicroRNAs/metabolism , Up-Regulation , Xenograft Model Antitumor Assays
14.
Oncologist ; 22(8): 886-e79, 2017 08.
Article in English | MEDLINE | ID: mdl-28592624

ABSTRACT

LESSONS LEARNED: Difficulties in translating in vitro results into clinical practice are inevitable.Further efforts to verify the efficacy of alternative schedules of pemetrexed in solid tumors are encouraged. BACKGROUND: We investigated the cytotoxic activity of pemetrexed in combination with several drugs (gemcitabine, carboplatin, vinorelbine, and mitomycin C) using different exposure schedules in three colon cancer cell lines. The best results were obtained with the following schedule: a prolonged pemetrexed exposure followed by a 48-hour wash-out and then gemcitabine. This combination was then advanced to a phase II clinical trial. METHODS: Patients with metastatic colorectal cancer in progression after standard treatment were included in the study. Adequate bone marrow reserve, normal hepatic and renal function, and an Eastern Cooperative Oncology Group (ECOG) performance status of 0-2 were required. Treatment consisted of an 8-hour intravenous infusion of pemetrexed 150 mg/m2 on day 1 and a 30-minute intravenous infusion of gemcitabine 1,000 mg/m2 on day 3 of each cycle, repeated every 14 days. RESULTS: Fourteen patients were enrolled onto the study (first step). No objective responses were seen, and evidence of stable disease was observed in only one of the 12 evaluable patients. The most important grade 3-4 side effects were hematological toxicity (neutropenia 64.2%, thrombocytopenia 71.4%, anemia 28.7%), fatigue (50.0%), and stomatitis (21.5%). Median overall survival and time to progression were 5.8 months (95% confidence interval [CI]: 3.9-7.1) and 2.1 months (95% CI: 1.7-2.8), respectively. CONCLUSION: The experimental pemetrexed-gemcitabine combination proved to be inactive and moderately toxic.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Colorectal Neoplasms/drug therapy , Deoxycytidine/analogs & derivatives , Pemetrexed/administration & dosage , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cell Line, Tumor , Colorectal Neoplasms/pathology , Deoxycytidine/administration & dosage , Deoxycytidine/adverse effects , Disease Progression , Disease-Free Survival , Drug Administration Schedule , Drug-Related Side Effects and Adverse Reactions/classification , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Humans , Infusions, Intravenous , Male , Middle Aged , Neoplasm Metastasis , Pemetrexed/adverse effects , Gemcitabine
15.
Clin Cancer Res ; 23(11): 2891-2904, 2017 06 01.
Article in English | MEDLINE | ID: mdl-27903673

ABSTRACT

Purpose: The oncogenic miR-155 is upregulated in many human cancers, and its expression is increased in more aggressive and therapy-resistant tumors, but the molecular mechanisms underlying miR-155-induced therapy resistance are not fully understood. The main objectives of this study were to determine the role of miR-155 in resistance to chemotherapy and to evaluate anti-miR-155 treatment to chemosensitize tumors.Experimental Design: We performed in vitro studies on cell lines to investigate the role of miR-155 in therapy resistance. To assess the effects of miR-155 inhibition on chemoresistance, we used an in vivo orthotopic lung cancer model of athymic nude mice, which we treated with anti-miR-155 alone or in combination with chemotherapy. To analyze the association of miR-155 expression and the combination of miR-155 and TP53 expression with cancer survival, we studied 956 patients with lung cancer, chronic lymphocytic leukemia, and acute lymphoblastic leukemia.Results: We demonstrate that miR-155 induces resistance to multiple chemotherapeutic agents in vitro, and that downregulation of miR-155 successfully resensitizes tumors to chemotherapy in vivo We show that anti-miR-155-DOPC can be considered non-toxic in vivo We further demonstrate that miR-155 and TP53 are linked in a negative feedback mechanism and that a combination of high expression of miR-155 and low expression of TP53 is significantly associated with shorter survival in lung cancer.Conclusions: Our findings support the existence of an miR-155/TP53 feedback loop, which is involved in resistance to chemotherapy and which can be specifically targeted to overcome drug resistance, an important cause of cancer-related death. Clin Cancer Res; 23(11); 2891-904. ©2016 AACR.


Subject(s)
Antagomirs/administration & dosage , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/drug therapy , MicroRNAs/genetics , Animals , Cell Line, Tumor , Cisplatin/administration & dosage , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , MicroRNAs/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics
16.
Semin Cell Dev Biol ; 67: 23-28, 2017 07.
Article in English | MEDLINE | ID: mdl-27956165

ABSTRACT

In recent years there has been an increasing interest of the scientific community on exosome research, with particular emphasis on the mechanisms by which tumor-derived exosomes can promote tumor growth. Particularly, exosome-mediated immune-escape is under deep investigation and still represents a quite controversial issue. Tumor-derived exosomes are carriers of information able to reprogram functions of immune target cells, influencing their development, maturation, and antitumor activities. They deliver proteins similar to those of the parent cancer cells, but also genetic messages like genomic DNA, mRNA, and microRNAs (miRNAs) that ultimately share the so called "tumor microenvironment" in a pro-tumoral fashion. The content of tumor-derived exosomes could be implicated in several signaling pathways operating in the tumor microenvironment, providing a further modality of dys-regulation of antitumor immunity. The aim of this review is to provide a state-of-the-art highlight of to the most recent discoveries in the field of interaction between tumor-derived exosomic miRNAs and the cells of immune system.


Subject(s)
Exosomes/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neoplasm Proteins/genetics , Neoplasms/metabolism , Tumor Microenvironment/immunology , Biological Transport , Cell Communication , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/pathology , Exosomes/immunology , Exosomes/pathology , Humans , Immunity, Innate , Lymphatic Metastasis , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , MicroRNAs/immunology , MicroRNAs/metabolism , Neoplasm Invasiveness , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Tumor Escape
17.
Gut ; 65(6): 977-989, 2016 06.
Article in English | MEDLINE | ID: mdl-25804630

ABSTRACT

OBJECTIVE: MicroRNA (miRNA) expression profile can be used as prognostic marker for human cancers. We aim to explore the significance of miRNAs in colorectal cancer (CRC) metastasis. DESIGN: We performed miRNA microarrays using primary CRC tissues from patients with and without metastasis, and validated selected candidates in 85 CRC samples by quantitative real-time PCR (qRT-PCR). We tested metastatic activity of selected miRNAs and identified miRNA targets by prediction algorithms, qRT-PCR, western blot and luciferase assays. Clinical outcomes were analysed in six sets of CRC cases (n=449), including The Cancer Genome Atlas (TCGA) consortium and correlated with miR-224 status. We used the Kaplan-Meier method and log-rank test to assess the difference in survival between patients with low or high levels of miR-224 expression. RESULTS: MiR-224 expression increases consistently with tumour burden and microsatellite stable status, and miR-224 enhances CRC metastasis in vitro and in vivo. We identified SMAD4 as a miR-224 target and observed negative correlation (Spearman Rs=-0.44, p<0.0001) between SMAD4 and miR-224 expression in clinical samples. Patients with high miR-224 levels display shorter overall survival in multiple CRC cohorts (p=0.0259, 0.0137, 0.0207, 0.0181, 0.0331 and 0.0037, respectively), and shorter metastasis-free survival (HR 6.51, 95% CI 1.97 to 21.51, p=0.0008). In the TCGA set, combined analysis of miR-224 with SMAD4 expression enhanced correlation with survival (HR 4.12, 95% CI 1.1 to 15.41, p=0.0175). CONCLUSIONS: MiR-224 promotes CRC metastasis, at least in part, through the regulation of SMAD4. MiR-224 expression in primary CRC, alone or combined with its targets, may have prognostic value for survival of patients with CRC.


Subject(s)
Adenocarcinoma/diagnosis , Biomarkers, Tumor/blood , Colorectal Neoplasms/diagnosis , MicroRNAs/blood , Adenocarcinoma/genetics , Adenocarcinoma/mortality , Adenocarcinoma/secondary , Adult , Aged , Aged, 80 and over , Animals , Austria , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , In Vitro Techniques , Italy , Kaplan-Meier Estimate , Male , Mice , Middle Aged , Neoplasm Invasiveness , Predictive Value of Tests , Romania , Sensitivity and Specificity , United Kingdom
18.
J Natl Cancer Inst ; 107(7)2015 Jul.
Article in English | MEDLINE | ID: mdl-25972604

ABSTRACT

BACKGROUND: How exosomic microRNAs (miRNAs) contribute to the development of drug resistance in the context of the tumor microenvironment has not been previously described in neuroblastoma (NBL). METHODS: Coculture experiments were performed to assess exosomic transfer of miR-21 from NBL cells to human monocytes and miR-155 from human monocytes to NBL cells. Luciferase reporter assays were performed to assess miR-155 targeting of TERF1 in NBL cells. Tumor growth was measured in NBL xenografts treated with Cisplatin and peritumoral exosomic miR-155 (n = 6 mice per group) CD163, miR-155, and TERF1 levels were assessed in 20 NBL primary tissues by Human Exon Arrays and quantitative real-time polymerase chain reaction. Student's t test was used to evaluate the differences between treatment groups. All statistical tests were two-sided. RESULTS: miR-21 mean fold change (f.c.) was 12.08±0.30 (P < .001) in human monocytes treated with NBL derived exosomes for 48 hours, and miR-155 mean f.c. was 4.51±0.25 (P < .001) in NBL cells cocultured with human monocytes for 48 hours. TERF1 mean luciferase activity in miR-155 transfected NBL cells normalized to scrambled was 0.36 ± 0.05 (P <.001). Mean tumor volumes in Dotap-miR-155 compared with Dotap-scrambled were 322.80±120mm(3) and 76.00±39.3mm(3), P = .002 at day 24, respectively. Patients with high CD163 infiltrating NBLs had statistically significantly higher intratumoral levels of miR-155 (P = .04) and lower levels of TERF1 mRNA (P = .02). CONCLUSIONS: These data indicate a unique role of exosomic miR-21 and miR-155 in the cross-talk between NBL cells and human monocytes in the resistance to chemotherapy, through a novel exosomic miR-21/TLR8-NF-кB/exosomic miR-155/TERF1 signaling pathway.


Subject(s)
Drug Resistance, Neoplasm , Exosomes/metabolism , MicroRNAs/metabolism , Monocytes/metabolism , Neuroblastoma/drug therapy , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Cell Communication , Cisplatin/pharmacology , Coculture Techniques , Gene Expression Regulation, Neoplastic , Heterografts , Humans , NF-kappa B/metabolism , Neuroblastoma/metabolism , Real-Time Polymerase Chain Reaction , Receptor Cross-Talk , Shelterin Complex , Telomere-Binding Proteins/metabolism , Toll-Like Receptor 8/metabolism , Tumor Microenvironment
19.
Expert Rev Mol Diagn ; 14(5): 565-74, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24844135

ABSTRACT

miRNAs are small noncoding RNAs with gene regulatory functions, frequently dysregulated in human cancers. Specific signatures of differentially expressed miRNAs can be used in the diagnosis of cancer and in some cases harbor prognostic implications. The biology of cancer is dictated not only by cancer cells but also by the surrounding tumor microenvironment. In particular, the role of miRNAs within the tumor microenvironment is emerging as of paramount importance. This review will focus on the current knowledge of the role of miRNAs and both cellular and stromal components of the tumor microenvironment. We will also discuss more recent findings, showing that miRNAs can be found inside of exosomes and mediate the cross-talk between cancer cells and surrounding cells, leading to the discovery of new fascinating molecular mechanisms leading to a better understanding of the cancer 'niche' and how these noncoding RNAs can become very promising diagnostic molecules.


Subject(s)
Biomarkers, Tumor/metabolism , MicroRNAs/metabolism , Neoplasms/metabolism , Tumor Microenvironment , Biomarkers, Tumor/genetics , Exosomes/metabolism , Humans , MicroRNAs/genetics , Neoplasms/diagnosis , Neoplasms/genetics
20.
Melanoma Res ; 24(3): 181-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24638153

ABSTRACT

MicroRNAs are increasingly being recognized to play an important role in finely tuning gene expression; therefore, their dysregulation in cancer has been investigated extensively. In terms of melanoma, they are involved in the regulation of many genes and pathways impacting invasiveness, dissemination, and disease progression. Many microRNAs also target genes regulating ontogenesis and functions of the immune system. Indeed, fine-tuning of gene expression by microRNAs is necessary for normal differentiation of the various components of the immune system and for mounting an effective innate and cell-mediated response, which has been shown to be able to control tumor growth. Dendritic cells, by presenting antigens to and activating naive T cells, constitute a critical aspect and have been therefore been used in many studies of cancer vaccination with promising results. Many genes regulating functions and plasticity of dendritic cells are indeed targeted by microRNAs, whose expression is also dependent on maturation status. Therefore, microRNAs could provide new potential therapeutic targets both on the tumor and on the immune system, and could also be used to characterize dendritic cells utilized in immunotherapy trials.


Subject(s)
Cancer Vaccines/therapeutic use , Dendritic Cells/transplantation , Immunotherapy/methods , Melanoma/therapy , MicroRNAs/immunology , Skin Neoplasms/therapy , Adaptive Immunity , Animals , Cell Differentiation , Cell Lineage , Dendritic Cells/immunology , Gene Expression Regulation, Neoplastic , Humans , Immunity, Innate , Melanoma/genetics , Melanoma/immunology , Skin Neoplasms/genetics , Skin Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...