Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 363: 121329, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852420

ABSTRACT

Microalgae-mediated industrial flue gas biofixation has been widely discussed as a clean alternative for greenhouse gas mitigation. Through photosynthetic processes, microalgae can fix carbon dioxide (CO2) and other compounds and can also be exploited to obtain high value-added products in a circular economy. One of the major limitations of this bioprocess is the high concentrations of CO2, sulfur oxides (SOx), and nitrogen oxides (NOx) in flue gases, according to the origin of the fuel, that can inhibit photosynthesis and reduce the process efficiency. To overcome these limitations, researchers have recently developed new technologies and enhanced process configurations, thereby increased productivity and CO2 removal rates. Overall, CO2 biofixation rates from flue gases by microalgae ranged from 72 mg L-1 d -1 to over 435 mg L-1 d-1, which were directly influenced by different factors, mainly the microalgae species and photobioreactor. Additionally, mixotrophic culture have shown potential in improving microalgae productivity. Progress in developing new reactor configurations, with pilot-scale implementations was observed, resulting in an increase in patents related to the subject and in the implementation of companies using combustion gases in microalgae culture. Advancements in microalgae-based green technologies for environmental impact mitigation have led to more efficient biotechnological processes and opened large-scale possibilities.


Subject(s)
Carbon Dioxide , Microalgae , Microalgae/metabolism , Carbon Dioxide/chemistry , Gases , Greenhouse Gases , Carbon/chemistry , Photosynthesis
2.
Bioresour Technol ; 214: 159-165, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27132223

ABSTRACT

Microalgae can use the CO2 from coal power plants in their metabolic pathways. However, these microorganisms must be able to tolerate other residues produced from burning coal. This study evaluated the wastes addition (CO2, SO2, NO and ash) present in the flue gas from a coal power plant on the growth parameters during culture, CO2 biofixation and on the biomass characterization of Chlorella fusca LEB 111. The SO2 and NO injection (until 400ppm) in cultivations did not markedly affect CO2 biofixation by microalga. The best CO2 biofixation efficiency was obtained with 10% CO2, 200ppm SO2 and NO and 40ppm ash (50.0±0.8%, w w(-1)), showing a specific growth rate of 0.18±0.01 d(-1). The C. fusca LEB 111 biomass composition was similar in all experiments with around 19.7% (w w(-1)) carbohydrates, 15.5% (w w(-1)) lipids and 50.2% (w w(-1)) proteins.


Subject(s)
Chlorella/metabolism , Coal , Biomass , Carbon Dioxide/metabolism , Power Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...