Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 137(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37888135

ABSTRACT

Polarised epithelial cell divisions represent a fundamental mechanism for tissue maintenance and morphogenesis. Morphological and mechanical changes in the plasma membrane influence the organisation and crosstalk of microtubules and actin at the cell cortex, thereby regulating the mitotic spindle machinery and chromosome segregation. Yet, the precise mechanisms linking plasma membrane remodelling to cell polarity and cortical cytoskeleton dynamics to ensure accurate execution of mitosis in mammalian epithelial cells remain poorly understood. Here, we manipulated the density of mammary epithelial cells in culture, which led to several mitotic defects. Perturbation of cell-cell adhesion formation impairs the dynamics of the plasma membrane, affecting the shape and size of mitotic cells and resulting in defects in mitotic progression and the generation of daughter cells with aberrant architecture. In these conditions, F- actin-astral microtubule crosstalk is impaired, leading to mitotic spindle misassembly and misorientation, which in turn contributes to chromosome mis-segregation. Mechanistically, we identify S100 Ca2+-binding protein A11 (S100A11) as a key membrane-associated regulator that forms a complex with E-cadherin (CDH1) and the leucine-glycine-asparagine repeat protein LGN (also known as GPSM2) to coordinate plasma membrane remodelling with E-cadherin-mediated cell adhesion and LGN-dependent mitotic spindle machinery. Thus, plasma membrane-mediated maintenance of mammalian epithelial cell identity is crucial for correct execution of polarised cell divisions, genome maintenance and safeguarding tissue integrity.


Subject(s)
Actins , Cell Polarity , Animals , Cell Adhesion , Actins/metabolism , Cell Polarity/physiology , Mitosis , Microtubules/metabolism , Spindle Apparatus/metabolism , Cell Membrane/metabolism , Cadherins/genetics , Cadherins/metabolism , Mammals/metabolism
2.
Nat Metab ; 5(11): 1969-1985, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37884694

ABSTRACT

T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8+ T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage. Expression of Glut2 is modulated by environmental factors including glucose and oxygen availability and extracellular acidification. Glut2 is highly expressed by circulating, recently primed T cells, allowing efficient glucose uptake and storage. In glucose-deprived inflammatory environments, Glut2 becomes downregulated, thus preventing passive loss of intracellular glucose. Mechanistically, Glut2 expression is regulated by a combination of molecular interactions involving hypoxia-inducible factor-1 alpha, galectin-9 and stomatin. Finally, we show that human T cells also rely on this glucose transporter, thus providing a potential target for therapeutic immunomodulation.


Subject(s)
Glucose Transport Proteins, Facilitative , Glucose , Mice , Humans , Animals , Glucose/metabolism , Biological Transport/physiology , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Cell Differentiation , CD8-Positive T-Lymphocytes/metabolism
3.
Nat Commun ; 14(1): 151, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36631478

ABSTRACT

Oriented cell divisions are critical for the formation and maintenance of structured epithelia. Proper mitotic spindle orientation relies on polarised anchoring of force generators to the cell cortex by the evolutionarily conserved protein complex formed by the Gαi subunit of heterotrimeric G proteins, the Leucine-Glycine-Asparagine repeat protein (LGN) and the nuclear mitotic apparatus protein. However, the polarity cues that control cortical patterning of this ternary complex remain largely unknown in mammalian epithelia. Here we identify the membrane-associated protein Annexin A1 (ANXA1) as an interactor of LGN in mammary epithelial cells. Annexin A1 acts independently of Gαi to instruct the accumulation of LGN and nuclear mitotic apparatus protein at the lateral cortex to ensure cortical anchoring of Dynein-Dynactin and astral microtubules and thereby planar alignment of the mitotic spindle. Loss of Annexin A1 randomises mitotic spindle orientation, which in turn disrupts epithelial architecture and luminogenesis in three-dimensional cultures of primary mammary epithelial cells. Our findings establish Annexin A1 as an upstream cortical cue that regulates LGN to direct planar cell divisions during mammalian epithelial morphogenesis.


Subject(s)
Annexin A1 , Cell Polarity , Epithelial Cells , Spindle Apparatus , Animals , Humans , Mice , Annexin A1/metabolism , Cell Cycle Proteins/metabolism , Cell Division/genetics , Cell Division/physiology , Cell Polarity/genetics , Cell Polarity/physiology , Epithelial Cells/metabolism , Mammals/metabolism , Morphogenesis , Spindle Apparatus/genetics , Spindle Apparatus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...