Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674792

ABSTRACT

Alzheimer's disease (AD) is known to be caused by amyloid ß-peptide (Aß) misfolded into ß-sheets, but this knowledge has not yet led to treatments to prevent AD. To identify novel molecular players in Aß toxicity, we carried out a genome-wide screen in Saccharomyces cerevisiae, using a library of 5154 gene knock-out strains expressing Aß1-42. We identified 81 mammalian orthologue genes that enhance Aß1-42 toxicity, while 157 were protective. Next, we performed interactome and text-mining studies to increase the number of genes and to identify the main cellular functions affected by Aß oligomers (oAß). We found that the most affected cellular functions were calcium regulation, protein translation and mitochondrial activity. We focused on SURF4, a protein that regulates the store-operated calcium channel (SOCE). An in vitro analysis using human neuroblastoma cells showed that SURF4 silencing induced higher intracellular calcium levels, while its overexpression decreased calcium entry. Furthermore, SURF4 silencing produced a significant reduction in cell death when cells were challenged with oAß1-42, whereas SURF4 overexpression induced Aß1-42 cytotoxicity. In summary, we identified new enhancer and protective activities for Aß toxicity and showed that SURF4 contributes to oAß1-42 neurotoxicity by decreasing SOCE activity.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals , Humans , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/chemistry , Calcium/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Cell Death , Calcium Channels/genetics , Peptide Fragments/genetics , Peptide Fragments/toxicity , Peptide Fragments/metabolism , Mammals/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
2.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499491

ABSTRACT

Alzheimer's disease (AD) is characterised by the presence of extracellular amyloid plaques in the brain. They are composed of aggregated amyloid beta-peptide (Aß) misfolded into beta-sheets which are the cause of the AD memory impairment and dementia. Memory depends on the hippocampal formation and maintenance of synapses by long-term potentiation (LTP), whose main steps are the activation of NMDA receptors, the phosphorylation of CaMKIIα and the nuclear translocation of the transcription factor CREB. It is known that Aß oligomers (oAß) induce synaptic loss and impair the formation of new synapses. Here, we have studied the effects of oAß on CaMKIIα. We found that oAß produce reactive oxygen species (ROS), that induce CaMKIIα oxidation in human neuroblastoma cells as we assayed by western blot and immunofluorescence. Moreover, this oxidized isoform is significantly present in brain samples from AD patients. We found that the oxidized CaMKIIα is active independently of the binding to calcium/calmodulin, and that CaMKIIα phosphorylation is mutually exclusive with CaMKIIα oxidation as revealed by immunoprecipitation and western blot. An in silico modelling of the enzyme was also performed to demonstrate that oxidation induces an activated state of CaMKIIα. In brains from AD transgenic models of mice and in primary cultures of murine hippocampal neurons, we demonstrated that the oxidation of CaMKIIα induces the phosphorylation of CREB and its translocation to the nucleus to promote the transcription of ARC and BDNF. Our data suggests that CaMKIIα oxidation would be a pro-survival mechanism that is triggered when a noxious stimulus challenges neurons as do oAß.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals , Humans , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Hippocampus/metabolism , Long-Term Potentiation , Synapses/metabolism , Oxidation-Reduction , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
3.
Brain Commun ; 4(5): fcac243, 2022.
Article in English | MEDLINE | ID: mdl-36267327

ABSTRACT

Alzheimer's disease and Type 2 diabetes are pathological processes associated to ageing. Moreover, there are evidences supporting a mechanistic link between Alzheimer's disease and insulin resistance (one of the first hallmarks of Type 2 diabetes). Regarding Alzheimer's disease, amyloid ß-peptide aggregation into ß-sheets is the main hallmark of Alzheimer's disease. At monomeric state, amyloid ß-peptide is not toxic but its function in brain, if any, is unknown. Here we show, by in silico study, that monomeric amyloid ß-peptide 1-40 shares the tertiary structure with insulin and is thereby able to bind and activate insulin receptor. We validated this prediction experimentally by treating human neuroblastoma cells with increasing concentrations of monomeric amyloid ß-peptide 1-40. Our results confirm that monomeric amyloid ß-peptide 1-40 activates insulin receptor autophosphorylation, triggering downstream enzyme phosphorylations and the glucose Transporter 4 translocation to the membrane. On the other hand, neuronal insulin resistance is known to be associated to Alzheimer's disease since early stages. We thus modelled the docking of oligomeric amyloid ß-peptide 1-40 to insulin receptor. We found that oligomeric amyloid ß-peptide 1-40 blocks insulin receptor, impairing its activation. It was confirmed in vitro by observing the lack of insulin receptor autophosphorylation, and also the impairment of insulin-induced intracellular enzyme activations and the glucose Transporter 4 translocation to the membrane. By biological system analysis, we have carried out a mathematical model recapitulating the process that turns amyloid ß-peptide binding to insulin receptor from the physiological to the pathophysiological regime. Our results suggest that monomeric amyloid ß-peptide 1-40 contributes to mimic insulin effects in the brain, which could be good when neurons have an extra requirement of energy beside the well-known protective effects on insulin intracellular signalling, while its accumulation and subsequent oligomerization blocks the insulin receptor producing insulin resistance and compromising neuronal metabolism and protective pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...