Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721861

ABSTRACT

Two new salts of a mononuclear tripodal Fe(II) complex were prepared, using ClO4- and Cl-. The ClO4- sample (1) remained HS at low temperatures, similar to the previously reported BF4- analogue. Crystallising with the Cl- anion (2) led to a markedly different crystal packing arrangement, and engendered SCO activity. This has been correlated to the lower crystal packing density in 2 and the coordination complex conformational differences arising due to the packing motifs of 1 and 2. Further, solvent ordering effects have been proposed to facilitate spin transition behaviour in 2.

4.
Chemistry ; 29(19): e202203742, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36550089

ABSTRACT

Discrete spin crossover (SCO) heteronuclear cages are a rare class of materials which have potential use in next-generation molecular transport and catalysis. Previous investigations of cubic cage [Fe8 Pd6 L8 ]28+ constructed using semi-rigid metalloligands, found that FeII centers of the cage did not undergo spin transition. In this work, substitution of the secondary metal center at the face of the cage resulted in SCO behavior, evidenced by magnetic susceptibility, Mössbauer spectroscopy and single crystal X-ray diffraction. Structural comparisons of these two cages shed light on the possible interplay of inter- and intramolecular interactions associated with SCO in the NiII analogue, 1 ([Fe8 Ni6 L8 (CH3 CN)12 ]28+ ). The distorted octahedral coordination environment, as well as the occupation of the CH3 CN in the NiII axial positions of 1, prevented close packing of cages observed in the PdII analogue. This led to offset, distant packing arrangements whereby important areas within the cage underwent dramatic structural changes with the exhibition of SCO.

5.
Chemosphere ; 238: 124664, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31472349

ABSTRACT

Chemosensors have already demonstrated potential for the detection and imaging of metal ions in solutions and biological systems, however, their applications to soil analysis are limited. This study explores the potential of utilizing a chemosensor for the detection of exchangeable Cu2+ in soils via qualitative (solution visual color change) and quantitative (UV-Vis spectrophotometry) approaches. Montmorillonite and kaolin clays were doped with Cu(NO3)2 solutions from 2.5 to 50 mM, and contaminated soil samples were collected from a historic copper mine. The exchangeable Cu2+ was extracted using a standard CaCl2 cation exchange approach, and the Cu2+ concentration in the resulting solutions determined by UV-Vis spectrophotometry, using a chemosensor, and compared to traditional ICP-MS analysis. Analytical results showed that the chemosensor provided a visual response in contaminated soils at concentrations of 25 µM and quantitative detection to concentrations of 1 µM using UV-Vis spectrophotometry. This work demonstrates the first reported chemosensor for exchangeable Cu2+ with application to soil systems.


Subject(s)
Colorimetry/methods , Copper/analysis , Soil Pollutants/analysis , Bentonite/chemistry , Cations , Clay/chemistry , Mining , Soil , Spectrophotometry
6.
ACS Omega ; 3(9): 10471-10480, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-31459173

ABSTRACT

Herein, we report the synthesis and characterization of a chemosensor, 5-(diethylamino)-2-(2,3-dihydro-1H-perimidin-2-yl)phenol (HL), synthesized from a condensation between 4-(diethylamino)salicylaldehyde and 1,8-diaminonaphthalene. Upon investigation of the sensing properties of HL, it was found that this sensor may be employed for simple yet efficient detection of Cu2+ in aqueous methanol solutions. The selective and ratiometric response to Cu2+ yielded an outstandingly low limit of detection of 3.7 nM by spectrophotometry and is also useful as a naked-eye sensor from 2.5 µM. The system was studied by spectrophotometric pH titrations to determine Cu2+ binding constants and complex speciation. Binding of Cu2+ to HL occurs in 1:1 stoichiometry, in good agreement with high-resolution electrospray ionization mass spectrometry (ESI-HRMS) results, Cu2+ titrations, and Job's plot experiments, while the coordination geometry was tentatively assigned as square pyramidal by spectroscopic studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...