Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 10(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34827214

ABSTRACT

Nanobiotechnology is a promising field in the development of safe antibiotics to combat the increasing trend of antibiotic resistance. Nature is a vast reservoir for green materials used in the synthesis of non-toxic and environmentally friendly nano-antibiotics. We present for the first time a facile, green, cost-effective, plant-mediated synthesis of platinum nanoparticles (PtNPs) using the extract of Combretum erythrophyllum (CE) plant leaves. The extract of CE served as both a bio-reductant and a stabilizing agent. The as-synthesized PtNPs were characterized using ultraviolet-visible (UV-Vis) absorption spectroscopy, high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. The HR-TEM image confirmed that the PtNPs are ultrasmall, spherical, and well dispersed with an average particle diameter of 1.04 ± 0.26 nm. The PtNPs showed strong antibacterial activities against pathogenic Gram-positive Staphylococcus epidermidis (ATCC 14990) at a minimum inhibitory concentration (MIC) of 3.125 µg/mL and Gram-negative Klebsiella oxytoca (ATCC 8724) and Klebsiella aerogenes (ATCC 27853) at an MIC value of 1.56 µg/mL. The CE-stabilized PtNPs was mostly effective in Klebsiella species that are causative organisms in nosocomial infections.

2.
Antibiotics (Basel) ; 10(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34438944

ABSTRACT

We herein report a facile, green, cost-effective, plant-mediated synthesis of gold nanoparticles (AuNPs) for the first time using Combretum erythrophyllum (CE) plant leaves. The synthesis was conducted at room temperature using CE leaf extract serving as a reducing and capping agent. The as-synthesized AuNPs were found to be crystalline, well dispersed, and spherical in shape with an average diameter of 13.20 nm and an excellent stability of over 60 days. The AuNPs showed broad-spectrum antibacterial activities against both pathogenic Gram-positive (Staphylococcus epidermidis (ATCC14990), Staphylococcus aureus (ATCC 25923), Mycobacterium smegmatis (MC 215)) and Gram-negative bacteria (Proteus mirabilis (ATCC 7002), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 13822), Klebsiella oxytoca (ATCC 8724)), with a minimum inhibition concentration of 62.5 µg/mL. In addition, the as-synthesized AuNPs were highly stable with exceptional cell viability towards normal cells (BHK- 21) and cancerous cancer cell lines (cervical and lung cancer).

3.
Pharmaceutics ; 12(11)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143388

ABSTRACT

As the field of nanomedicine develops and tackles the recent surge in antibiotic resistance, there is a need to have an in-depth understanding and a synergistic view of research on the effectiveness of a metal nanoparticle (NP) as an antibacterial agent especially their mechanisms of action. The constant development of bacterial resistance has led scientists to develop novel antibiotic agents. Silver, gold and its bimetallic combination are one of the most promising metal NPs because they show strong antibacterial activity. In this review we discuss the mode of synthesis and the proposed mechanism of biocidal antibacterial activity of metal NPs. These mechanisms include DNA degradation, protein oxidation, generation of reactive oxygen species, lipid peroxidation, ATP depletion, damage of biomolecules and membrane interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...