Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(4): e0153757, 2016.
Article in English | MEDLINE | ID: mdl-27124303

ABSTRACT

We report molecular genetic analysis of 42 affected individuals referred with a diagnosis of aniridia who previously screened as negative for intragenic PAX6 mutations. Of these 42, the diagnoses were 31 individuals with aniridia and 11 individuals referred with a diagnosis of Gillespie syndrome (iris hypoplasia, ataxia and mild to moderate developmental delay). Array-based comparative genomic hybridization identified six whole gene deletions: four encompassing PAX6 and two encompassing FOXC1. Six deletions with plausible cis-regulatory effects were identified: five that were 3' (telomeric) to PAX6 and one within a gene desert 5' (telomeric) to PITX2. Sequence analysis of the FOXC1 and PITX2 coding regions identified two plausibly pathogenic de novo FOXC1 missense mutations (p.Pro79Thr and p.Leu101Pro). No intragenic mutations were detected in PITX2. FISH mapping in an individual with Gillespie-like syndrome with an apparently balanced X;11 reciprocal translocation revealed disruption of a gene at each breakpoint: ARHGAP6 on the X chromosome and PHF21A on chromosome 11. In the other individuals with Gillespie syndrome no mutations were identified in either of these genes, or in HCCS which lies close to the Xp breakpoint. Disruption of PHF21A has previously been implicated in the causation of intellectual disability (but not aniridia). Plausibly causative mutations were identified in 15 out of 42 individuals (12/32 aniridia; 3/11 Gillespie syndrome). Fourteen of these mutations presented in the known aniridia genes; PAX6, FOXC1 and PITX2. The large number of individuals in the cohort with no mutation identified suggests greater locus heterogeneity may exist in both isolated and syndromic aniridia than was previously appreciated.


Subject(s)
Aniridia/genetics , Cerebellar Ataxia/genetics , Intellectual Disability/genetics , PAX6 Transcription Factor/genetics , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, X/genetics , Comparative Genomic Hybridization/methods , Female , Forkhead Transcription Factors/genetics , GTPase-Activating Proteins/genetics , Genetic Testing/methods , Histone Deacetylases/genetics , Homeodomain Proteins/genetics , Humans , Male , Mutation/genetics , Transcription Factors/genetics , Homeobox Protein PITX2
2.
Hum Mutat ; 32(12): 1492-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21948517

ABSTRACT

Disruption of the long-range cis-regulation of developmental gene expression is increasingly recognized as a cause of human disease. Here, we report a novel type of long-range cis-regulatory mutation, in which ectopic expression of a gene is driven by an enhancer that is not its own. We have termed this gain of regulatory information as "enhancer adoption." We mapped the breakpoints of a de novo 7q inversion in a child with features of a holoprosencephaly spectrum (HPES) disorder and severe upper limb syndactyly with lower limb synpolydactyly. The HPES plausibly results from the 7q36.3 breakpoint dislocating the sonic hedgehog (SHH) gene from enhancers that are known to drive expression in the early forebrain. However, the limb phenotype cannot be explained by loss of known SHH enhancers. The SHH transcription unit is relocated to 7q22.1, ∼190 kb 3' of a highly conserved noncoding element (HCNE2) within an intron of EMID2. We show that HCNE2 functions as a limb bud enhancer in mouse embryos and drives ectopic expression of Shh in vivo recapitulating the limb phenotype in the child. This developmental genetic mechanism may explain a proportion of the novel or unexplained phenotypes associated with balanced chromosome rearrangements.


Subject(s)
Chromosome Inversion/genetics , Enhancer Elements, Genetic/genetics , Hedgehog Proteins/genetics , Holoprosencephaly/genetics , Syndactyly/genetics , Animals , Child, Preschool , Chromosomes, Human, Pair 7/genetics , Extremities/embryology , Female , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Humans , Limb Buds/embryology , Mice , Mice, Transgenic , Mutation
3.
PLoS One ; 5(8): e12375, 2010 Aug 25.
Article in English | MEDLINE | ID: mdl-20811621

ABSTRACT

BACKGROUND: Bilateral renal agenesis/hypoplasia/dysplasia (BRAHD) is a relatively common, lethal malformation in humans. Established clinical risk factors include maternal insulin dependent diabetes mellitus and male sex of the fetus. In the majority of cases, no specific etiology can be established, although teratogenic, syndromal and single gene causes can be assigned to some cases. METHODOLOGY/PRINCIPAL FINDINGS: 45 unrelated fetuses, stillbirths or infants with lethal BRAHD were ascertained through a single regional paediatric pathology service (male:female 34:11 or 3.1:1). The previously reported phenotypic overlaps with VACTERL, caudal dysgenesis, hemifacial microsomia and Müllerian defects were confirmed. A new finding is that 16/45 (35.6%; m:f 13:3 or 4.3:1) BRAHD cases had one or more extrarenal malformations indicative of a disoder of laterality determination including; incomplete lobulation of right lung (seven cases), malrotation of the gut (seven cases) and persistence of the left superior vena cava (five cases). One such case with multiple laterality defects and sirelomelia was found to have a de novo apparently balanced reciprocal translocation 46,XY,t(2;6)(p22.3;q12). Translocation breakpoint mapping was performed by interphase fluorescent in-situ hybridization (FISH) using nuclei extracted from archival tissue sections in both this case and an isolated bilateral renal agenesis case associated with a de novo 46,XY,t(1;2)(q41;p25.3). Both t(2;6) breakpoints mapped to gene-free regions with no strong evidence of cis-regulatory potential. Ten genes localized within 500 kb of the t(1;2) breakpoints. Wholemount in-situ expression analyses of the mouse orthologs of these genes in embryonic mouse kidneys showed strong expression of Esrrg, encoding a nuclear steroid hormone receptor. Immunohistochemical analysis showed that Esrrg was restricted to proximal ductal tissue within the embryonic kidney. CONCLUSIONS/SIGNIFICANCE: The previously unreported association of BRAHD with laterality defects suggests that renal agenesis may share a common etiology with heterotaxy in some cases. Translocation breakpoint mapping identified ESRRG as a plausible candidate gene for BRAHD.


Subject(s)
Chromosome Breakpoints , Kidney/abnormalities , Translocation, Genetic , Animals , Female , Gene Expression Regulation, Developmental , Humans , In Situ Hybridization, Fluorescence , Infant , Kidney/embryology , Kidney/metabolism , Male , Mice , Phenotype , Receptors, Estrogen/metabolism
4.
Nat Genet ; 41(3): 359-64, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19234473

ABSTRACT

Pierre Robin sequence (PRS) is an important subgroup of cleft palate. We report several lines of evidence for the existence of a 17q24 locus underlying PRS, including linkage analysis results, a clustering of translocation breakpoints 1.06-1.23 Mb upstream of SOX9, and microdeletions both approximately 1.5 Mb centromeric and approximately 1.5 Mb telomeric of SOX9. We have also identified a heterozygous point mutation in an evolutionarily conserved region of DNA with in vitro and in vivo features of a developmental enhancer. This enhancer is centromeric to the breakpoint cluster and maps within one of the microdeletion regions. The mutation abrogates the in vitro enhancer function and alters binding of the transcription factor MSX1 as compared to the wild-type sequence. In the developing mouse mandible, the 3-Mb region bounded by the microdeletions shows a regionally specific chromatin decompaction in cells expressing Sox9. Some cases of PRS may thus result from developmental misexpression of SOX9 due to disruption of very-long-range cis-regulatory elements.


Subject(s)
Pierre Robin Syndrome/genetics , SOX9 Transcription Factor/genetics , Untranslated Regions/genetics , Animals , Base Sequence , Chromosome Mapping , Chromosomes, Human, Pair 17 , Conserved Sequence , Family , Gene Expression Regulation, Developmental , Humans , Mice , Mice, Transgenic , Molecular Sequence Data , Pedigree , Polymorphism, Genetic/physiology , Regulatory Elements, Transcriptional/genetics
5.
Am J Hum Genet ; 81(2): 264-79, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17668377

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is caused by deletions within the polymorphic DNA tandem array D4Z4. Each D4Z4 repeat unit has an open reading frame (ORF), termed "DUX4," containing two homeobox sequences. Because there has been no evidence of a transcript from the array, these deletions are thought to cause FSHD by a position effect on other genes. Here, we identify D4Z4 homologues in the genomes of rodents, Afrotheria (superorder of elephants and related species), and other species and show that the DUX4 ORF is conserved. Phylogenetic analysis suggests that primate and Afrotherian D4Z4 arrays are orthologous and originated from a retrotransposed copy of an intron-containing DUX gene, DUXC. Reverse-transcriptase polymerase chain reaction and RNA fluorescence and tissue in situ hybridization data indicate transcription of the mouse array. Together with the conservation of the DUX4 ORF for >100 million years, this strongly supports a coding function for D4Z4 and necessitates re-examination of current models of the FSHD disease mechanism.


Subject(s)
Evolution, Molecular , Muscular Dystrophy, Facioscapulohumeral/genetics , Tandem Repeat Sequences , Amino Acid Sequence , Animals , Conserved Sequence , Homeodomain Proteins , Humans , In Situ Hybridization, Fluorescence , Mammals , Mice , Molecular Sequence Data , Mutation , Phylogeny , Primates , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Transcription, Genetic
6.
Hum Mol Genet ; 15(9): 1413-22, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16543359

ABSTRACT

We report heterozygous, loss-of-function SOX2 mutations in three unrelated individuals with Anophthalmia-Esophageal-Genital (AEG) syndrome. One previously reported case [Rogers, R.C. (1988) Unknown cases. Proceedings of the Greenwood Genetic Center. 7, 57.] has a 2.7 Mb deletion encompassing SOX2 and associated with a cryptic translocation t(3;7)(q28;p21.3). The deletion and translocation breakpoints on chromosome 3q are >8.6 Mb apart and both chromosome rearrangements have occurred de novo. Another published case [Petrackova et al. (2004) Association of oesophageal atresia, anophthalmia and renal duplex. Eur. J. Pediatr., 163, 333-334.] has a de novo nonsense mutation, Q55X. A previously unreported case with severe bilateral microphthalmia and oesophageal atresia has a de novo missense mutation, R74P, that alters a highly evolutionarily conserved residue within the high mobility group domain, which is critical for DNA-binding of SOX2. In a yeast one-hybrid assay, this mutation abolishes Sox2-induced activation of the chick delta-crystallin DC5 enhancer. Four other reported AEG syndrome cases were extensively screened and do not have detectable SOX2 mutations. Two of these cases have unilateral eye malformations. SOX2 mutations are known to cause severe bilateral eye malformations but this is the first report implicating loss of function mutations in this transcription factor in oesophageal malformations. SOX2 is expressed in the developing foregut in mouse and zebrafish embryos and an apparently normal pattern of expression is maintained in Shh-/- mouse embryos, suggesting either that Sox2 acts upstream of Shh or functions in a different pathway. Three-dimensional reconstructions of the major morphological events in the developing foregut and eye from Carnegie Stages 12 and 13 human embryos are presented and compared with the data from model organisms. SOX2, with NMYC and CHD7, is now the third transcriptional regulator known to be critical for normal oesophageal development in humans.


Subject(s)
Anophthalmos/genetics , Esophagus/abnormalities , Genitalia, Male/abnormalities , HMGB Proteins/genetics , Point Mutation , Transcription Factors/genetics , Animals , Anophthalmos/embryology , Anophthalmos/enzymology , Chickens , DNA Mutational Analysis , DNA-Binding Proteins/genetics , Esophagus/embryology , Esophagus/enzymology , Female , Gene Expression Regulation, Developmental/physiology , Genitalia, Male/embryology , Genitalia, Male/enzymology , Humans , Male , Mice , SOXB1 Transcription Factors , Syndrome , Zebrafish
7.
Hum Mol Genet ; 12(19): 2491-501, 2003 Oct 01.
Article in English | MEDLINE | ID: mdl-12915443

ABSTRACT

Cytogenetic evidence, in the form of deletions and balanced translocations, points to the existence of a locus on 2q32-q33, for which haploinsufficiency results in isolated cleft palate (CPO). Here we show by high-resolution FISH mapping of two de novo CPO-associated translocations involving 2q32-q33 that one breakpoint interrupts the transcription unit of the gene encoding the DNA-binding protein SATB2 (formerly KIAA1034). The breakpoint in the other translocation is located 130 kb 3' to the SATB2 polyadenylation signal, within a conserved region of non-coding DNA. The SATB2 gene is transcribed in a telomeric to centromeric direction and lies in a gene-poor region of 2q32-q33; the nearest confirmed gene is 1.26 Mb centromeric to the SATB2 polyadenylation signal. SATB2-encoding transcripts are assembled from 11 exons that span 191 kb of genomic DNA. They encode a protein of 733 amino acids that has two CUT domains and a homeodomain and shows a remarkable degree of evolutionary conservation, with only three amino acid substitutions between mouse and human. This protein belongs to the same family as SATB1, a nuclear matrix-attachment region binding protein implicated in transcriptional control and control of chromatin remodelling. There are also sequence similarities to the Drosophila protein DVE. Whole mount in situ hybridization to mouse embryos shows site- and stage-specific expression of SATB2 in the developing palate. Despite the strong evidence supporting an important role for SATB2 in palate development, mutation analysis of 70 unrelated patients with CPO did not reveal any coding region variants.


Subject(s)
Chromosomes, Human, Pair 2 , Cleft Palate/genetics , Genes , Amino Acid Motifs , Amino Acid Sequence , Animals , Base Sequence , Cells, Cultured , Chromatin Assembly and Disassembly/genetics , Drosophila , Drosophila Proteins , Exons , Gene Expression Regulation, Developmental , Humans , In Situ Hybridization, Fluorescence , Mice , Molecular Sequence Data , Molecular Weight , Open Reading Frames , Palate/cytology , Phylogeny , Physical Chromosome Mapping , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Transcription, Genetic , Translocation, Genetic
8.
Nat Genet ; 33(4): 461-3, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12612584

ABSTRACT

A submicroscopic deletion containing SOX2 was identified at the 3q breakpoint in a child with t(3;11)(q26.3;p11.2) associated with bilateral anophthalmia. Subsequent SOX2 mutation analysis identified de novo truncating mutations of SOX2 in 4 of 35 (11%) individuals with anophthalmia. Both eyes were affected in all cases with an identified mutation.


Subject(s)
Anophthalmos/genetics , Chromosomes, Human, Pair 3 , DNA Mutational Analysis , DNA-Binding Proteins/genetics , Nuclear Proteins/genetics , Codon, Nonsense , Databases as Topic , Family Health , Female , Gene Deletion , HMGB Proteins , Heterozygote , Humans , Introns , Male , Microphthalmos/genetics , Models, Genetic , Molecular Sequence Data , Mutation , Phenotype , SOXB1 Transcription Factors , Transcription Factors
9.
Am J Hum Genet ; 70(4): 972-84, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11875757

ABSTRACT

The subtelomeric regions of human chromosomes are comprised of sequence homologies shared between distinct subsets of chromosomes. In the course of developing a set of unique human telomere clones, we identified many clones containing such shared homologies, characterized by the presence of cross-hybridization signals on one or more telomeres in a fluorescence in situ hybridization (FISH) assay. We studied the evolutionary origin of seven subtelomeric clones by performing comparative FISH analysis on a primate panel that included great apes and Old World monkeys. All clones tested showed a single hybridization site in Old World monkeys that corresponded to one of the orthologous human sites, thus indicating the ancestral origin. The timing of the duplication events varied among the subtelomeric regions, from approximately 5 to approximately 25 million years ago. To examine the origin of and mechanism for one of these subtelomeric duplications, we compared the sequence derived from human 2q13--an ancestral fusion site of two great ape telomeric regions--with its paralogous subtelomeric sequences at 9p and 22q. These paralogous regions share large continuous homologies and contain three genes: RABL2B, forkhead box D4, and COBW-like. Our results provide further evidence for subtelomeric-mediated genomic duplication and demonstrate that these segmental duplications are most likely the result of ancestral unbalanced translocations that have been fixed in the genome during recent primate evolution.


Subject(s)
Chromosomes, Human/genetics , Chromosomes/genetics , Evolution, Molecular , Primates/genetics , Sequence Homology, Nucleic Acid , Telomere/genetics , Animals , Cell Line , Cercopithecidae/genetics , Chromosomes, Human, Pair 2/genetics , Cloning, Molecular , Gene Duplication , Hominidae/genetics , Humans , In Situ Hybridization, Fluorescence , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...