Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Animal ; 7(12): 1944-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24016452

ABSTRACT

The objective of this study was to compare the efficiency of transfer of selenium (Se) to plasma and milk from inorganic sodium selenite, either free or microencapsulated, and from selenized yeast in dairy cows. The study consisted of an in situ-nylon bags incubation, and in an in vivo experiment to compare the Se status of cows supplemented with either sodium selenite, microencapsulated sodium selenite, or Se yeast. Thirty dairy cows, divided in five groups, were fed the following diets: the control group (CTR) received a total mixed ration supplemented with sodium selenite in order to have 0.3 mg/kg DM of total Se; 0.3M and 0.5M groups received the same control diet supplemented with lipid microencapsulated sodium selenite to provide 0.3 and 0.5 mg/kg DM of total Se, respectively; 0.3Y and 0.5Y groups received selenized yeast to provide 0.3 and 0.5 mg/kg of total Se, respectively. Cows were fed the supplements for 56 days during which milk, blood, and fecal samples were collected weekly to conduct analysis of Se and glutathione peroxidase (GSH-px) activity. Se concentration in the nylon bags was assessed to 72%, 64%, and 40% of the initial value (time 0) after 4, 8, and 24 h of incubation, respectively. In vivo, cows supplemented with 0.3 mg/kg of microencapsulated Se had higher milk Se concentration compared to CTR. The increment was more pronounced at the highest inclusion rate (0.5 mg/kg, 0.5M group). GSH-px activity was not significantly affected by treatments. The results indicate that lipid microencapsulation has the potential to protect nutrients from complete rumen reduction and that Se from microencapsulated selenite is incorporated in milk more efficiently than the free form. Microencapsulated sodium selenite was shown to be comparable to Se-yeast in terms of availability and incorporation in milk when fed at 0.3 mg/kg DM, whereas the inclusion in the diet at 0.5 mg/kg DM resulted in higher plasma and milk concentrations than selenized yeast.


Subject(s)
Cattle/physiology , Selenium/blood , Sodium Selenite/pharmacology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Cattle/blood , Diet/veterinary , Dietary Supplements , Drug Compounding , Feces/chemistry , Female , Milk/chemistry , Selenium/chemistry , Sodium Selenite/chemistry
2.
J Appl Microbiol ; 114(2): 308-17, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23110383

ABSTRACT

AIM: In vitro and in vivo challenge studies were undertaken to develop an in-feed additive of microencapsulated propionic, sorbic acids and pure botanicals to control Campylobacter jejuni in broilers at slaughter age. METHODS AND RESULTS: Organic acids (OA) and pure botanicals were tested in vitro against Camp. jejuni, whereas in vivo, chickens were fed either a control diet, or increasing doses of the additive for 42 days (experiment 1); in the second experiment, chickens received the additive at 0.1 or 0.3% from day 0 to 21 or from day 22 to 42. The additive consistently reduced Camp. jejuni caecal counts at any given dose (exp. 1) or inclusion plan (exp. 2). Moreover, it was able to reduce the number of goblet cells and modify mucin glycoconjugates biosynthesis pattern. CONCLUSIONS: We developed an additive that was effective in reducing Camp. jejuni in slaughter-age chickens even at low doses (0.1%). That efficacy was the result of the synergistic action between OA and botanicals. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides a strategy to reduce Camp. jejuni in broilers and, as a consequence, to improve the safety of the food chain. Moreover, data suggest that a treatment limited to the last weeks before slaughter would allow to save on inclusion of the additive throughout the whole production cycle.


Subject(s)
Animal Feed , Campylobacter Infections/veterinary , Campylobacter jejuni/drug effects , Chickens/microbiology , Food Additives/pharmacology , Poultry Diseases/microbiology , Animals , Campylobacter Infections/microbiology , Campylobacter Infections/pathology , Campylobacter jejuni/growth & development , Campylobacter jejuni/isolation & purification , Cecum/cytology , Cecum/microbiology , Eugenol/pharmacology , Intestinal Mucosa/pathology , Poultry Diseases/pathology , Propionates/pharmacology , Sorbic Acid/pharmacology , Thymol/pharmacology
3.
Poult Sci ; 90(8): 1676-82, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21753203

ABSTRACT

The reduction of Salmonella prevalence in broilers is a priority in European Union agricultural policies because treatment with antibiotics is forbidden by Regulation (EC) 2160/2003. Two trials were conducted to evaluate the efficacy of a microencapsulated blend of sorbic acid and nature-identical compounds (i.e., chemically synthesized botanicals; SAB) on the reduction of the cecal prevalence and contents of Salmonella enterica serovars Hadar and Enteritidis in experimentally infected chickens. In the first trial, 125 one-day-old Lohmann specific-pathogen-free chickens were assigned to one of the following treatments: negative control (not challenged and not treated), positive control (challenged and not treated), SAB0.3, SAB1, or SAB5 (challenged and treated with the microencapsulated blend included in the feed at 0.03, 0.1, or 0.5%, respectively). At 30 d of age, birds were infected with 10(6) cfu of Salmonella Hadar, and after 5, 10, or 20 d postinfection, 5, 10, and 10 birds per treatment, respectively, were killed and the cecal contents and liver and spleen samples were analyzed for Salmonella Hadar. In the second trial, 100 one-day-old Ross 708 chickens were assigned to 1 of 5 treatments: control (not treated), SAB0.3, SAB1, SAB2, or SAB5 (treated with the blend included in the feed at 0.03, 0.1, 0.2, or 0.5%, respectively). At 7 d of age, the birds were challenged with 10(5) cfu of Salmonella Enteritidis, and after 7, 14, or 24 d after challenge, 5, 5, and 10 birds per treatment, respectively, were killed and cecal contents were analyzed for Salmonella Enteritidis. Results showed that in the early stage of infection Salmonella prevalence was high in both studies, whereas at the end of the observation periods, the blends at 0.03, 0.1, and 0.5 in the challenge with Salmonella Hadar and at 0.2 and 0.5% in the challenge with Salmonella Enteritidis significantly reduced (by 2 log(10) cfu) the cecal content of Salmonella. This study showed that intestinal delivery of microencapsulated sorbic acid and nature-identical compounds can result in a 100-fold reduction of Salmonella at the intestinal level in broilers at slaughter age.


Subject(s)
Biological Products/therapeutic use , Chickens , Poultry Diseases/prevention & control , Salmonella Infections, Animal/microbiology , Salmonella/classification , Sorbic Acid/therapeutic use , Animal Feed , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Biological Products/administration & dosage , Diet/veterinary , Drug Compounding , Female , Salmonella Infections, Animal/prevention & control , Sorbic Acid/administration & dosage
4.
Theriogenology ; 72(9): 1163-70, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19767086

ABSTRACT

A simple and efficient method for producing multitransgenic animals is required for medical and veterinary applications. Sperm-mediated gene transfer (SMGT) is an effective method for introducing multiple genes into pigs (Sus, Sus scrofa). The major benefits of this technique are the high efficiency, low cost, and ease of use compared with that of other methods: Sperm-mediated gene transfer does not require embryo handling or expensive equipment. The aim of this study was to investigate the influence of SMGT treatment and exogenous DNA uptake on sperm quality. Even after a coincubation with a 20-fold larger amount (100 microg/mL) of DNA than usual (5 microg/mL), sperm quality parameters were not significantly affected, confirming the hypothesis that the SMGT protocol itself or the amount of bound DNA do not compromise the possibility of an extended employment of SMGT. More importantly, we found that semen used for in vitro fertilization 24h after DNA uptake gave good cleavage (60% vs. 58%, treated vs. control) and developmental rates definitely positive (41% vs. 48%, treated vs. control). These good results are connected to a competitive efficiency of transformation (62%) due to the numerous improvements in SMGT technique. We demonstrate that SMGT-treated spermatozoa retain good quality and fertilization potential for at least 24h, expanding the possibility to apply transgenesis in field conditions in swine, where the greatest hurdles are fertilization timing and plain procedure.


Subject(s)
Fertilization/physiology , Gene Transfer Techniques , Genetic Engineering/methods , Spermatozoa/cytology , Spermatozoa/metabolism , Swine/physiology , Animals , Cells, Cultured , Efficiency , Embryo, Mammalian , Embryonic Development/physiology , Female , Fertilization in Vitro/veterinary , Male , Quality Control , Semen Analysis , Spermatozoa/physiology , Swine/embryology , Swine/genetics
5.
Animal ; 3(2): 269-74, 2009 Feb.
Article in English | MEDLINE | ID: mdl-22444230

ABSTRACT

In pig production, artificial insemination is widely carried out and the use of fresh diluted semen is predominant. For this reason, there are increasing interests in developing new extenders and in establishing the optimal storage conditions for diluted spermatozoa. In the last few decades, we utilised a homemade diluent (swine fertilisation medium (SFM)) for spermatozoa manipulation and biotechnological application as the production of transgenic pigs utilising the sperm-mediated gene transfer technique. The purpose of the present study is therefore to analyse the ability of SFM, in comparison to four commercial extenders, in preserving the quality of diluted boar semen stored at 16.5°C till 15 days. We utilised some of the main predictive tests as objectively measured motility, acrosome and sperm membrane integrity, high mitochondrial membrane potential and pH. Based on our in vitro study, SFM could be declared as a good long-term extender, able to preserve spermatozoa quality as well as Androhep Enduraguard for up to 6 to 9 days and more.

6.
Theriogenology ; 63(3): 806-17, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15629799

ABSTRACT

New biotechnologies, such as sperm-mediated gene transfer (SMGT), spermatozoa freezing and spermatozoa sorting have improved the possibilities to produce animals with desirable features. The main problem associated with these technologies is the scarce availability of spermatozoa for insemination. The objective of this study was to develop a laparoscopic insemination (LI) technique in gilt that allows the use of low semen doses resulting in high fertilization rates (FR) and minimal distress to the animal; the efficiency of this technique was compared to conventional artificial insemination (AI). Ten gilts were inseminated 36 h post hCG treatment near both utero-tubal junctions (UTJ) with 1.5 x 10(9)spermatozoa/5 mL per horn and 10 gilts (C) underwent conventional AI. Embryos were collected either at two to four cell stage (LI, n = 5; C, n = 5) for determination of fertilization rate or at day 6 for evaluation of developmental competence (LI, n = 5; C, n = 5). LI gilts showed a slightly higher FR than control animals. In a second trial, 24 gilts underwent LI with varying doses (1.5 x 10(8), 1.5 x 10(7), 1 x 10(7), 5 x 10(6) or 1 x 10(6)) of semen. Two to four stage embryos were collected and FR was evaluated in each tube. FR obtained with the lowest dose was significantly different from that with other dosages (P < 0.05). Embryos were cultured in vitro to blastocyst stages (percentage of blastocysts: 79.2 +/- 3.6%). In a third trial, five gilts were inseminated with semen processed by SMGT technique; both FR (86.1 +/- 9.9%) and transgene protein expression were satisfactory. In conclusion, this study shows that LI can be a useful tool for reducing doses of insemination, without affecting the efficiency of fertilization; this technique could have a wide range of biotechnological applications.


Subject(s)
Biotechnology , Insemination, Artificial/veterinary , Laparoscopy/veterinary , Sperm Count , Superovulation , Swine , Animals , Blastocyst/physiology , Corpus Luteum/anatomy & histology , Embryo Culture Techniques/veterinary , Embryonic Development , Female , Fertilization , Insemination, Artificial/methods , Pregnancy , Sexual Maturation
7.
Reproduction ; 126(5): 647-52, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14611638

ABSTRACT

The aim of this study was to investigate the effect of fasting on both vascular endothelial growth factor (VEGF) production and VEGF mRNA expression in growing ovarian follicles (>5 mm in diameter) from gilts at 48 h after equine chorionic gonadotrophin (eCG) treatment. The concentrations of VEGF and albumin were measured in the follicular fluid of single follicles, and VEGF mRNA was determined in the follicle wall. Fasting resulted in a significant increase in VEGF concentrations in follicular fluid (20.64+/-0.72 versus 10.79+/-0.86 ng ml(-1), P<0.001), but it did not affect the total amount of VEGF mRNA in the follicle wall compared with that of fed animals. However, VEGF mRNA in the theca and granulosa compartments increased and decreased, respectively, compared with that of fed animals. The concentrations of albumin measured in follicular fluid as an index of vessel permeability were higher in fasted than in animals fed normally, most likely as a result of the increased VEGF production. Follicular steroidogenesis was impaired in fasted animals. Progesterone was the most abundant steroid in the follicular fluid and oestradiol was present in lower concentrations, thus indicating an alteration in the steroidogenic enzymatic cascade. In conclusion, fasting induces an increase in both VEGF production and vessel permeability. Such a reaction is unable under severe food deprivation to preserve follicle function, but may represent a mechanism that regulates blood vessel extension and distribution in relation to tissue requirements and availability of systemic nutrient.


Subject(s)
Fasting , Ovarian Follicle/metabolism , Vascular Endothelial Growth Factor A/biosynthesis , Albumins/analysis , Animals , Estradiol/analysis , Estradiol/biosynthesis , Female , Follicular Fluid/chemistry , Gonadotropins, Equine/pharmacology , Granulosa Cells/chemistry , Progesterone/analysis , Progesterone/biosynthesis , RNA, Messenger/analysis , Swine , Theca Cells/chemistry , Vascular Endothelial Growth Factor A/analysis , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...