Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 22(1): 237, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33823787

ABSTRACT

BACKGROUND: Colossoma macropomum (tambaqui) and Piaractus mesopotamicus (pacu) are good fish species for aquaculture. The tambacu, individuals originating from the induced hybridization of the female tambaqui with the male pacu, present rapid growth and robustness, characteristics which have made the tambacu a good choice for Brazilian fish farms. Here, we used small RNA sequencing to examine global miRNA expression in the genotypes pacu (PC), tambaqui (TQ), and hybrid tambacu (TC), (Juveniles, n = 5 per genotype), to better understand the relationship between tambacu and its parental species, and also to clarify the mechanisms involved in tambacu muscle growth and maintenance based on miRNAs expression. RESULTS: Regarding differentially expressed (DE) miRNAs between the three genotypes, we observed 8 upregulated and 7 downregulated miRNAs considering TC vs. PC; 14 miRNAs were upregulated and 10 were downregulated considering TC vs. TQ, and 15 miRNAs upregulated and 9 were downregulated considering PC vs. TQ. The majority of the miRNAs showed specific regulation for each genotype pair, and no miRNA were shared between the 3 genotype pairs, in both up- and down-regulated miRNAs. Considering only the miRNAs with validated target genes, we observed the miRNAs miR-144-3p, miR-138-5p, miR-206-3p, and miR-499-5p. GO enrichment analysis showed that the main target genes for these miRNAs were grouped in pathways related to oxygen homeostasis, blood vessel modulation, and oxidative metabolism. CONCLUSIONS: Our global miRNA analysis provided interesting DE miRNAs in the skeletal muscle of pacu, tambaqui, and the hybrid tambacu. In addition, in the hybrid tambacu, we identified some miRNAs controlling important molecular muscle markers that could be relevant for the farming maximization.


Subject(s)
Characiformes , MicroRNAs , Animals , Brazil , Characiformes/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Male , MicroRNAs/genetics , Muscle, Skeletal
2.
Toxicol Sci ; 171(1): 84-97, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31199487

ABSTRACT

Environmental exposure to phthalates during intrauterine development might increase susceptibility to neoplasms in reproductive organs such as the prostate. Although studies have suggested an increase in prostatic lesions in adult animals submitted to perinatal exposure to phthalates, the molecular pathways underlying these alterations remain unclear. Genome-wide levels of mRNAs and miRNAs were monitored with RNA-seq to determine if perinatal exposure to a phthalate mixture in pregnant rats is capable of modifying gene expression during prostate development of the filial generation. The mixture contains diethyl-phthalate, di-(2-ethylhexyl)-phthalate, dibutyl-phthalate, di-isononyl-phthalate, di-isobutyl-phthalate, and benzylbutyl-phthalate. Pregnant females were divided into 4 groups and orally dosed daily from GD10 to PND21 with corn oil (Control: C) or the phthalate mixture at 3 doses (20 µg/kg/day: T1; 200 µg/kg/day: T2; 200 mg/kg/day: T3). The phthalate mixture decreased anogenital distance, prostate weight, and decreased testosterone level at the lowest exposure dose at PND22. The mixture also increased inflammatory foci and focal hyperplasia incidence at PND120. miR-184 was upregulated in all treated groups in relation to control and miR-141-3p was only upregulated at the lowest dose. In addition, 120 genes were deregulated at the lowest dose with several of these genes related to developmental, differentiation, and oncogenesis. The data indicate that phthalate exposure at lower doses can cause greater gene expression modulation as well as other downstream phenotypes than exposure at higher doses. A significant fraction of the downregulated genes were predicted to be targets of miR-141-3p and miR-184, both of which were induced at the lower exposure doses.

3.
Chromosome Res ; 25(3-4): 277-290, 2017 10.
Article in English | MEDLINE | ID: mdl-28776210

ABSTRACT

B chromosomes are dispensable elements observed in many eukaryotic species, including the African cichlid Astatotilapia latifasciata, which might have one or two B chromosomes. Although there have been many studies focused on the biology of these chromosomes, questions about the evolution, maintenance, and potential effects of these chromosomes remain. Here, we identified a variant form of the hnRNP Q-like gene inserted into the B chromosome of A. latifasciata that is characterized by a high copy number and intron-less structure. The absence of introns and presence of transposable elements with a reverse transcriptase domain flanking hnRNP Q-like sequences suggest that this gene was retroinserted into the B chromosome. RNA-Seq analysis did not show that the B variant retroinserted copies are transcriptionally active. However, RT-qPCR results showed variations in the canonical hnRNP Q-like copy expression levels among exons, tissues, sex, and B presence/absence. Although the patterns of transcription are not well understood, the exons of the B retrocopies were overexpressed, and a bias for female B+ expression was also observed. These results suggest that retroinsertion is an additional and important mechanism contributing to B chromosome formation. Furthermore, these findings indicate a bias towards female differential expression of B chromosome sequences, suggesting that B chromosomes and sex determination are somehow associated in cichlids.


Subject(s)
Chromosomes , Cichlids/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Mutagenesis, Insertional , Animals , Evolution, Molecular , Gene Duplication , Genome , Genomics , Transcription, Genetic
4.
Chromosoma ; 126(1): 73-81, 2017 02.
Article in English | MEDLINE | ID: mdl-27558128

ABSTRACT

Though hundreds to thousands of reports have described the distribution of B chromosomes among diverse eukaryote groups, a comprehensive theory of their biological role has not yet clearly emerged. B chromosomes are classically understood as a sea of repetitive DNA sequences that are poor in genes and are maintained by a parasitic-drive mechanism during cell division. Recent developments in high-throughput DNA/RNA analyses have increased the resolution of B chromosome biology beyond those of classical and molecular cytogenetic methods; B chromosomes contain many transcriptionally active sequences, including genes, and can modulate the activity of autosomal genes. Furthermore, the most recent knowledge obtained from omics analyses, which is associated with a systemic view, has demonstrated that B chromosomes can influence cell biology in a complex way, possibly favoring their own maintenance and perpetuation.


Subject(s)
Chromosomes/genetics , Repetitive Sequences, Nucleic Acid , Animals , Chromosome Mapping , Cytogenetic Analysis , Evolution, Molecular , Genomics/methods , Systems Biology
5.
Chromosoma ; 126(2): 313-323, 2017 03.
Article in English | MEDLINE | ID: mdl-27169573

ABSTRACT

Supernumerary chromosomes have been studied in many species of eukaryotes, including the cichlid fish, Astatotilapia latifasciata. However, there are many unanswered questions about the maintenance, inheritance, and functional aspects of supernumerary chromosomes. The cichlid family has been highlighted as a model for evolutionary studies, including those that focus on mechanisms of chromosome evolution. Individuals of A. latifasciata are known to carry up to two B heterochromatic isochromosomes that are enriched in repetitive DNA and contain few intact gene sequences. We isolated and characterized a transcriptionally active repeated DNA, called B chromosome noncoding DNA (BncDNA), highly represented across all B chromosomes of A. latifasciata. BncDNA transcripts are differentially processed among six different tissues, including the production of smaller transcripts, indicating transcriptional variation may be linked to B chromosome presence and sexual phenotype. The transcript lengths and lack of similarity with known protein/gene sequences indicate BncRNA might represent a novel long noncoding RNA family (lncRNA). The potential for interaction between BncRNA and known miRNAs were computationally predicted, resulting in the identification of possible binding of this sequence in upregulated miRNAs related to the presence of B chromosomes. In conclusion, Bnc is a transcriptionally active repetitive DNA enriched in B chromosomes with potential action over B chromosome maintenance in somatic cells and meiotic drive in gametic cells.


Subject(s)
Chromosomes , Cichlids/genetics , RNA, Untranslated , Repetitive Sequences, Nucleic Acid , Transcription, Genetic , Animals , Cluster Analysis , Computational Biology/methods , Evolution, Molecular , Female , Gene Expression Profiling , Gene Expression Regulation , Genomics/methods , Male
6.
BMC Genet ; 17(1): 119, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27539214

ABSTRACT

BACKGROUND: B chromosomes (Bs) are additional chromosomal elements found in a wide range of eukaryotes including fungi, plants and animals. B chromosomes are still enigmatic despite being the subject of hundreds, even thousands of reports. As yet there is no comprehensive theory for the biological role of B chromsomes thus, new studies are needed. Next-generation sequencing (NGS) holds promise for investigating classical issues in chromosome biology. NGS uses a large-scale approach that is required for advancing classical cytogenetic studies. Based on 454 sequencing data of a microdissected B chromosome and Illumina whole-genome sequencing data generated for 0B, 1B and 2B animals, we developed PCR- and qPCR-based markers for the B chromosomes of the cichlid fish Astatotilapia latifasciata (that possess 0, 1 or 2 B chromosomes). RESULTS: Specific PCR primers were designed to produce two amplified fragments for B-positive samples and the control fragment for B-negative samples. Thus, PCR markers detected the presence/absence of Bs but did not provide information about the number of Bs. However, quantitative PCR (qPCR) markers clearly discriminated between 1B and 2B samples. The high copy number of the marker identified in the B chromosomes was confirmed by chromosome mapping. CONCLUSIONS: The analysis of chromosome polymorphisms based on a NGS approach is a powerful strategy to obtain markers that detect the presence/absence of extra chromosomes or the gain or loss of genomic blocks. Further, qPCR can also provide information regarding the relative copy number of specific DNA fragments. These methods are useful to investigate various chromosome polymorphisms, including B and sex chromosomes, as well as chromosomal duplications and deletions. NGS data provide a detailed analysis of the composition of genomic regions that are thought to be present in B chromosomes.


Subject(s)
Cichlids/genetics , High-Throughput Nucleotide Sequencing/veterinary , Sequence Analysis, DNA/veterinary , Animals , High-Throughput Nucleotide Sequencing/methods , Karyotyping/veterinary
7.
Mol Biol Evol ; 31(8): 2061-72, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24770715

ABSTRACT

Approximately 15% of eukaryotes contain supernumerary B chromosomes. When present, B chromosomes frequently represent as much as 5% of the genome. Despite thousands of reports describing the distribution of supernumeraries in various taxa, a comprehensive theory for the origin, maintenance, and evolution of B chromosomes has not emerged. Here, we sequence the complete genomes of individual cichlid fish (Astatotilapia latifasciata) with and without B chromosomes, as well as microdissected B chromosomes, to identify DNA sequences on the B. B sequences were further analyzed through quantitative polymerase chain reaction and in situ hybridization. We find that the B chromosome contains thousands of sequences duplicated from essentially every chromosome in the ancestral karyotype. Although most genes on the B chromosome are fragmented, a few are largely intact, and we detect evidence that at least three of them are transcriptionally active. We propose a model in which the B chromosome originated early in the evolutionary history of Lake Victoria cichlids from a small fragment of one autosome. DNA sequences originating from several autosomes, including protein-coding genes and transposable elements, subsequently inserted into this proto-B. We propose that intact B chromosome genes involved with microtubule organization, kinetochore structure, recombination and progression through the cell cycle may play a role in driving the transmission of the B chromosome. Furthermore, our work suggests that karyotyping is an essential step prior to genome sequencing to avoid problems in genome assembly and analytical biases created by the presence of high copy number sequences on the B chromosome.


Subject(s)
Chromosomes/genetics , Cichlids/genetics , Fish Proteins/genetics , Genomics/methods , Animals , Cichlids/classification , Evolution, Molecular , Gene Duplication , High-Throughput Nucleotide Sequencing , Karyotype , Models, Molecular , Sequence Analysis, DNA
8.
Genetica ; 139(10): 1273-82, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22286964

ABSTRACT

B chromosomes are additional chromosomes widely studied in a diversity of eukaryotic groups, including fungi, plants and animals, but their origin, evolution and possible functions are not clearly understood. To further understand the genomic content and the evolutionary history of B chromosomes, classical and molecular cytogenetic analyses were conducted in the cichlid fish Astatotilapia latifasciata, which harbor 1­2 B chromosomes. Through cytogenetic mapping of several probes, including transposable elements, rRNA genes, a repeated DNA genomic fraction (C0t - 1 DNA), whole genome probes (comparative genomic hybridization), and BAC clones from Oreochromis niloticus, we found similarities between the B chromosome and the 1st chromosome pair and chromosomes harboring rRNA genes. Based on the cytogenetic mapping data, we suggest the B chromosome may have evolved from a small chromosomal fragment followed by the invasion of the proto-B chromosome by several repeated DNA families.


Subject(s)
Chromosomes/genetics , Cichlids/genetics , Genomics , Animals , Chromomycin A3/metabolism , Chromosome Banding , Evolution, Molecular , Female , Male , RNA, Ribosomal, 18S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...