Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 18(1): 59-72, 2018 01.
Article in English | MEDLINE | ID: mdl-29227145

ABSTRACT

Cave minerals deposited in the presence of microbes may host geochemical biosignatures that can be utilized to detect subsurface life on Earth, Mars, or other habitable worlds. The sulfur isotopic composition of gypsum (CaSO4·2H2O) formed in the presence of sulfur-oxidizing microbes in the Frasassi cave system, Italy, was evaluated as a biosignature. Sulfur isotopic compositions (δ34SV-CDT) of gypsum sampled from cave rooms with sulfidic air varied from -11 to -24‰, with minor deposits of elemental sulfur having δ34S values between -17 and -19‰. Over centimeter-length scales, the δ34S values of gypsum varied by up to 8.5‰. Complementary laboratory experiments showed negligible fractionation during the oxidation of elemental sulfur to sulfate by Acidithiobacillus thiooxidans isolated from the caves. Additionally, gypsum precipitated in the presence and absence of microbes at acidic pH characteristic of the sulfidic cave walls has δ34S values that are on average 1‰ higher than sulfate. We therefore interpret the 8.5‰ variation in cave gypsum δ34S (toward more negative values) to reflect the isotopic effect of microbial sulfide oxidation directly to sulfate or via elemental sulfur intermediate. This range is similar to that expected by abiotic sulfide oxidation with oxygen, thus complicating the use of sulfur isotopes as a biosignature at centimeter-length scales. However, at the cave room (meter-length) scale, reactive transport modeling suggests that the overall ∼13‰ variability in gypsum δ34S reflects isotopic distillation of circulating H2S gas due to microbial sulfide oxidation occurring along the cave wall-atmosphere interface. Systematic variations of gypsum δ34S along gas flow paths can thus be interpreted as biogenic given that slow, abiotic oxidation cannot produce the same spatial patterns over similar length scales. The expression and preservation potential of this biosignature is dependent on gas flow parameters and diagenetic processes that modify gypsum δ34S values over geological timescales. Key Words: Gypsum-Sulfur isotopes-Biosignature-Sulfide oxidation-Cave. Astrobiology 18, 59-72.


Subject(s)
Acidithiobacillus thiooxidans/metabolism , Calcium Sulfate/analysis , Exobiology/methods , Sulfur Isotopes/analysis , Acidithiobacillus thiooxidans/isolation & purification , Calcium Sulfate/chemistry , Caves/chemistry , Caves/microbiology , Earth, Planet , Life , Mars , Oxidation-Reduction , Sulfur/chemistry , Sulfur Isotopes/chemistry
2.
Environ Sci Technol ; 51(20): 11681-11691, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-28895726

ABSTRACT

Recent work has shown that iron oxides, such as goethite and hematite, may recrystallize in the presence of aqueous Fe2+ under anoxic conditions. This process, referred to as Fe2+-catalyzed recrystallization, can influence water quality by causing the incorporation/release of environmental contaminants and biological nutrients. Accounting for the effects of Fe2+-catalyzed recrystallization on water quality requires knowing the time scale over which recrystallization occurs. Here, we tested the hypothesis that nanoparticulate goethite becomes less susceptible to Fe2+-catalyzed recrystallization over time. We set up two batches of reactors in which 55Fe2+ tracer was added at two different time points and tracked the 55Fe partitioning in the aqueous and goethite phases over 60 days. Less 55Fe uptake occurred between 30 and 60 days than between 0 and 30 days, suggesting goethite recrystallization slowed with time. Fitting the data with a box model indicated that 17% of the goethite recrystallized after 30 days of reaction, and an additional 2% recrystallized between 30 and 60 days. The decreasing susceptibility of goethite to recrystallize as it reacted with aqueous Fe2+ suggested that recrystallization is likely only an important process over short time scales.


Subject(s)
Iron Compounds , Minerals , Ferric Compounds , Oxidation-Reduction , Water
3.
Front Microbiol ; 6: 822, 2015.
Article in English | MEDLINE | ID: mdl-26322031

ABSTRACT

Large, sulfur-cycling, calcite-precipitating bacteria in the genus Achromatium represent a significant proportion of bacterial communities near sediment-water interfaces at sites throughout the world. Our understanding of their potentially crucial roles in calcium, carbon, sulfur, nitrogen, and iron cycling is limited because they have not been cultured or sequenced using environmental genomics approaches to date. We utilized single-cell genomic sequencing to obtain one incomplete and two nearly complete draft genomes for Achromatium collected at Warm Mineral Springs (WMS), FL. Based on 16S rRNA gene sequences, the three cells represent distinct and relatively distant Achromatium populations (91-92% identity). The draft genomes encode key genes involved in sulfur and hydrogen oxidation; oxygen, nitrogen and polysulfide respiration; carbon and nitrogen fixation; organic carbon assimilation and storage; chemotaxis; twitching motility; antibiotic resistance; and membrane transport. Known genes for iron and manganese energy metabolism were not detected. The presence of pyrophosphatase and vacuolar (V)-type ATPases, which are generally rare in bacterial genomes, suggests a role for these enzymes in calcium transport, proton pumping, and/or energy generation in the membranes of calcite-containing inclusions.

4.
Oecologia ; 120(3): 416-426, 1999 Aug.
Article in English | MEDLINE | ID: mdl-28308018

ABSTRACT

The stable isotope compositions (C and N) of plants and animals of a marsh dominated by Spartina alterniflora in the Delaware Estuary were determined. The study focused on the juvenile stage of the Atlantic blue crab, Callinectes sapidus, and the importance of marsh-derived diets in supporting growth during this stage. Laboratory growth experiments and field data indicated that early juvenile blue crabs living in the Delaware Bay habitat fed primarily on zooplankton, while marsh-dwelling crabs, which were enriched in 13C relative to bay juveniles, utilized marsh-derived carbon for growth. In laboratory experiments, the degree to which juvenile blue crabs isotopically fractionated dietary nitrogen, as well as the growth rate, depended on the protein quality of the diet. The range of δ13C of amino acids in laboratory-reared crabs and their diets was almost 20‰, similar to the isotopic range of amino acids of other organisms. In laboratory studies, the δ13C of nonessential and essential amino acids in the diet were compared to those in juvenile crabs. Isotopic fractionation at the molecular level depended on diet quality and the crabs' physiological requirements. Comparison of whole-animal isotope data with individual amino acid C isotope measurements of wild juvenile blue crabs from the bay and marsh suggested a different source of total dietary carbon, yet a shared protein component, such as zooplankton.

SELECTION OF CITATIONS
SEARCH DETAIL
...