Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5781, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987545

ABSTRACT

Controlling large-scale many-body quantum systems at the level of single photons and single atomic systems is a central goal in quantum information science and technology. Intensive research and development has propelled foundry-based silicon-on-insulator photonic integrated circuits to a leading platform for large-scale optical control with individual mode programmability. However, integrating atomic quantum systems with single-emitter tunability remains an open challenge. Here, we overcome this barrier through the hybrid integration of multiple InAs/InP microchiplets containing high-brightness infrared semiconductor quantum dot single photon emitters into advanced silicon-on-insulator photonic integrated circuits fabricated in a 300 mm foundry process. With this platform, we achieve single-photon emission via resonance fluorescence and scalable emission wavelength tunability. The combined control of photonic and quantum systems opens the door to programmable quantum information processors manufactured in leading semiconductor foundries.

2.
Opt Express ; 27(17): 24188-24193, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31510312

ABSTRACT

Here we present extremely low connector-to-connector loss (≤3 dB) through silicon photonic chips using ultra-low loss (≤0.15 dB) splicing between SMF-28 and ultra-high numerical aperture (UHNA) fibers. The small MFD from the UHNA fibers enables strong coupling to hybrid TE/TM edge couplers achieving TM (TE) losses of 1.25 (2.35) dB per coupler and low polarization-dependent loss. Mode coupling simulations and tolerance are investigated to understand performance.

3.
Nat Commun ; 10(1): 2785, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31239445

ABSTRACT

Entanglement is the powerful and enigmatic resource central to quantum information processing, which promises capabilities in computing, simulation, secure communication, and metrology beyond what is possible for classical devices. Exactly quantifying the entanglement of an unknown system requires completely determining its quantum state, a task which demands an intractable number of measurements even for modestly-sized systems. Here we demonstrate a method for rigorously quantifying high-dimensional entanglement from extremely limited data. We improve an entropic, quantitative entanglement witness to operate directly on compressed experimental data acquired via an adaptive, multilevel sampling procedure. Only 6,456 measurements are needed to certify an entanglement-of-formation of 7.11 ± .04 ebits shared by two spatially-entangled photons. With a Hilbert space exceeding 68 billion dimensions, we need 20-million-times fewer measurements than the uncompressed approach and 1018-times fewer measurements than tomography. Our technique offers a universal method for quantifying entanglement in any large quantum system shared by two parties.

4.
J Vis Exp ; (122)2017 04 04.
Article in English | MEDLINE | ID: mdl-28447975

ABSTRACT

Silicon photonic chips have the potential to realize complex integrated quantum information processing circuits, including photon sources, qubit manipulation, and integrated single-photon detectors. Here, we present the key aspects of preparing and testing a silicon photonic quantum chip with an integrated photon source and two-photon interferometer. The most important aspect of an integrated quantum circuit is minimizing loss so that all of the generated photons are detected with the highest possible fidelity. Here, we describe how to perform low-loss edge coupling by using an ultra-high numerical aperture fiber to closely match the mode of the silicon waveguides. By using an optimized fusion splicing recipe, the UHNA fiber is seamlessly interfaced with a standard single-mode fiber. This low-loss coupling allows the measurement of high-fidelity photon production in an integrated silicon ring resonator and the subsequent two-photon interference of the produced photons in a closely integrated Mach-Zehnder interferometer. This paper describes the essential procedures for the preparation and characterization of high-performance and scalable silicon quantum photonic circuits.


Subject(s)
Equipment Design , Interferometry , Photons , Quantum Theory , Silicon , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...